
Generating OpenCL Kernels using Decompilation

• The Open Computing Language (OpenCL) is a framework for
developing parallel applications that can be mapped to a range of
target architectures.

• OpenCL includes a language (based on C99) for writing kernels
(functions that execute on OpenCL devices), plus APIs that are
used to define and then control the platforms.

• To allow kernels to be optimally compiled to the resources
available at runtime they are represented as strings in the
application.

• Has the added advantage that the host language, e.g. C++, does
not need to know anything about the kernel language.

• An OpenCL device driver compiles these strings into platform-
specific code at runtime. This distinguishes OpenCL from other
more common approaches that strive for platform independence
by using virtual machine code and just-in-time compilers.

• Here is an example kernel for vector addition:

OpenCL

Parallel Patterns
• A lot of algorithms can be described by combining a set of

common patterns, for example

• Map

• Reduce

• Map-reduce

• Adjacent difference

• Scan (a.k.a. parallel prefix)

• Searching

• We must parameterise each pattern with one or more

user-defined functions.

• In OpenCL we must combine a string-based

representation of the pattern with a string-based

representation of the user function to produce the

source for the kernel.

• For small problem sizes it may be faster to use a

task-based native approach (less overheads).

• So we might need two versions of the user function,

a native version and a “string” version; this is both

tedious and error-prone.

Example

• Small prototype developed as proof of concept.

• Would need to develop a robust decompiler and translator to
OpenCL kernels.

• For each pattern we would need to develop a family of
efficient kernels to exploit each platform.

• Would require the development of heuristics, perhaps an
autotuner, to choose when to use OpenCL, and when to use
native code.

• Currently a “10% project”.

• Could potentially be developed further if there was sufficient
interest.

Status

• OpenCL is a framework for developing applications that execute across a range of
device types (multicore x86, GPUs, FPGAs).

• It is gathering a lot of interest/momentum as a parallel programming platform.

• It uses a string representation for the kernels describing the OpenCL computations.

• This has a number of disadvantages, including difficulty of use and inefficiencies.

• An approach based on program decompilation might provide an alternative route to
developing some kernels and does not suffer from these disadvantages.

Summary
Func<float, float, float> f = // Some random function, e.g.

(float a, float b) =>
(float)Math.Sqrt(Math.Abs(Math.Sin(a) + Math.Cos(b)));

// Use C# implementation with task-based parallelism if appropriate
Map2(f, arrA, arrB, arrC);

// Use either C# or OpenCL implementation based on heuristics etc.
Map2(f, arrA, arrB, arrC, context);

• We automatically generate the appropriate OpenCL

kernel string if required, e.g.

• We can use “lazy” operators to delay the computations

until the result is required.

• Allows us to aggregate computations,

e.g. map of a map of a …

• Produces more compute-intensive OpenCL kernels.

const char* programSource =
“__kernel \n”
“void vecadd(__global int *A, \n”
“ __global int *B, \n”
“ __global int *C) \n”
“{ \n”
“ int idx = get_global_id(0; \n”
“ C[idx] = A[idx] + B[idx]; \n”
“} \n”

;

• Describing multiline string constants is tedious in many
languages. Developers often write the kernels in separate files
and then read the contents into strings at runtime.

• IDE support no longer available to us when developing kernels,
including compile-time type-checking, syntax highlighting, and
autocompletion.

• May decrease performance in some cases due to overheads.

• Not really platform-independent; even something simple like a
parallel reduce may need to choose between different kernels
depending on platform.

Deficiencies

Decompilation

• Given an executable, e.g. a .NET assembly, we can use

the metadata, plus heuristics, to decompile selected

methods back to a high-level abstract syntax tree (AST)

representation.

• Not necessarily identical to the original, but semantically

equivalent to it.

• Requires reflection/metadata, so not practical for C++.

• We can decompile the function arguments to our

patterns to generate kernels and call them when

appropriate.

• Use native version when required, e.g. data too small or

functions too complex to convert to an OpenCL kernel.

Executable

& Metadata

Parser . . .

AST

Source

Compiler

AST

Decompiler

OpenCL context

kernel void K(

global /* read_only */ float* a,

global /* read_only */ float* b,

global /* write_only */ float* c)

{

int index = get_global_id(0);

c[index] = sqrt (fabs (sin (a [index]) + cos (b [index])));

}

