
Hierarchical Demands

KEVIN MITCHELL

Agilent Laboratories

Initial deployments of Multiprotocol Label Switching (MPLS) were typically confined to the net-
work core. O✏ine tools were retargeted from ATM networks to MPLS to optimize the routing of
label switched paths (LSPs) across the network. As the technology matures MPLS deployment is
moving into the access networks. This creates a scaling problem for the optimization tools, with
many more demands, nodes and paths that have to be considered. This paper develops a range
of techniques for decomposing network topologies into a set of components, allowing us to solve a
group of small optimization problems rather than a single large one. Access trees are the simplest
access structures we can exploit, and in some cases may be su�cient to yield a tractable problem.
For more complex cases we develop a strategy based on the identification of biconnected compo-
nents and the construction of a component tree rooted at the network core. Finally we describe
how additional virtual nodes can be introduced to increase the flexibility of the approach, allowing
us to split components even further.

Key Words and Phrases: MPLS, hierarchical topologies, tra�c engineering, o✏ine optimization,
multicommodity flows

1. INTRODUCTION

When Multiprotocol Label Switching (MPLS) was first introduced in the late 1990s, one of the primary
drivers was the desire to make routers faster. ATM switches had better packet forwarding rates than
routers because fixed length label lookup was faster, and easier to implement in hardware, than the longest
match lookup used by IP routing. MPLS allowed a device to do the same job as a router but with the
performance of an ATM switch. Initially MPLS deployment was confined to the network core where the
improved routing speed could be fully exploited. The tra�c between any two points within the core will
be heavily aggregated, consisting of a large number of microflows. For each tra�c class we can construct
tra�c matrices showing how much tra�c of this type flows across the core during each measurement
period. In some cases, the demand will be su�ciently predictable over time that we can assign the tra�c
to MPLS paths, and then determine the best routes for these paths that minimize congestion. As long
as the variability in bandwidth requirements is not excessive, o✏ine path placement, coupled with the
use of autobandwidth mechanisms to adjust the reservations at runtime, e.g. [Cisco 2003], can yield a
useful network optimization strategy. ATM networks had previously been used within network cores,
and o✏ine tools had been developed to optimize the routing of paths through ATM clouds. These tools
were quickly adapted to support the o✏ine optimization of bandwidth guaranteed label switched paths
(LSPs) through MPLS clouds. Given the small size of typical core networks, this optimization problem
was reasonably tractable. The main constraint was that demands must not be split. They represent
a collection of aggregated flows and it would be di�cult to split these across multiple paths without
introducing unnecessary packet reordering within the individual flows.

With the advent of better hardware support for IP longest prefix matching the speed di↵erential
between MPLS and IP routing became less of an issue. However, the need for service di↵erential between
flows became increasingly important as operators struggled to find profitable revenue streams. Techniques
such as Di↵Serv allow packets to be treated di↵erently within each router. When a Di↵Serv marked packet
reaches the MPLS core the Di↵Serv code point can be mapped, albeit imperfectly, to the EXP bits in
the MPLS header, allowing the service di↵erential to be continued across the core. Di↵Serv provides few
guarantees about the quality of service that can be expected for a flow, which is understandable as no

Author’s address: K. Mitchell, Agilent Labs Scotland, South Queensferry, Scotland EH30 9TG
c� 2004 Agilent Technologies

Agilent Restricted Agilent Technical Report, No. AGL-2004-5, May 2004, Pages 1–27.

2 · Kevin Mitchell

resources are reserved for it. Furthermore, all packets with the same source and destination typically
follow the same path, irrespective of their Di↵Serv codepoint. There is clearly a limit to how much
service di↵erential you can achieve with such an approach. The obvious solution is to use MPLS to
provide multiple paths across the network, and to then assign flows to paths based on their tra�c class.
Whilst this can be done in a Di↵Serv environment, by using the Di↵Serv markings to guide the choice of
LSP at the ingress to the MPLS cloud, it introduces additional complexity into a part of the network that
is already heavily stressed. More recently, the MPLS boundary has been gradually moving outside the
core into the access networks. This allows packets to be classified and assigned to LSPs prior to reaching
the core, using tunneling to choose the desired path across the core and minimizing the signaling and
state that must be supported by the core routers. In scenarios that are more complex it also allows the
operator to choose di↵erent paths across the access networks themselves.

This trend has a number of consequences for the o✏ine optimization problem. The size of the MPLS
cloud is no longer restricted to the size of the core network. This creates a serious scaling problem for
the optimizer, requiring the development of techniques to decompose the problem into something more
manageable. The tra�c originating within the access layers will typically be less aggregated than that in
the core, and so exhibit greater fluctuations. This makes it di�cult to identify LSPs that are persistent
and stable enough to be worth routing o✏ine. Whilst in most cases the source of a flow will be some
distance from the ingress of the LSP it will be carried by, these points are starting to converge in some
important cases. For example, some voice gateways are already MPLS-enabled and individual calls could
be assigned to LSPs during the call setup process. TDM over MPLS (TDMoMPLS) access devices, e.g.
[RAD 2004], could also potentially support call mapping to LSPs. This has an impact on the optimization
process, as in these cases it may be acceptable to split demands across multiple LSPs without introducing
additional packet reordering within each flow/call.

Systems such as CPlane [CPlane 2003] and WANDL [Wandl 2002] allow an operator to optimize MPLS
demands across the core of a network. They assume a predefined partition of the network into access
and core routers, and the demands to be optimized are then restricted to the core (edge). In the case
of an MPLS-enabled VoIP gateway, our demands may originate in the access layers. We will call these
access LSPs. There are a number of reasons why we must treat the access LSP optimization problem
di↵erently to the equivalent core problem.

—Scalability. Globally optimizing a large number of demands, spanning many routers, is computationally
very expensive. This cost increases rapidly as we increase the number of demands and/or routers.
Decomposing the problem into a collection of simpler problems may be essential if we are to achieve
realistic optimization times.

—Administration. Many organizations use di↵erent groups of people to manage the core and access
networks. Even if we could route the demands across the whole cloud, we might not be able to deploy
such a solution because of these administrative divisions. A better approach might be to use the access
demands to construct a set of requirements for core demands necessary to support this tra�c. These
requirements could then be passed to the Core group who can optimize the placement of these demands
using traditional or new optimization techniques. The Access group would use the solutions to these
requirements to build LSPs to support the original demands. We argue that the requirements projected
onto the core from a set of access demands may be rather di↵erent in character to a traditional set of
core demands, potentially requiring di↵erent core optimization tools.

—Tunneling. Provisioning an LSP hop-by-hop across the whole route between ingress and egress may be
ine�cient. Each router along the way will need to process the signaling tra�c necessary to keep the
LSP alive, and to reserve state within the router. It will be more e�cient to define a set of LSPs across
the core, and then use these as tunnels for the permanent LSPs that originate in the access layers.
Only the access routers would store state specific to the access LSPs.

Our goal in this paper is to explore the problem of optimizing access level demands. Our strategy
will be to infer from these demands a set of requirements for LSPs crossing the core. Having optimized
the core LSPs, we will then show how these can be used to route the access LSPs. The organizational
structure of many operators makes it natural to split networks into core and access components. However,

Agilent Technical Report, No. AGL-2004-5, May 2004. Agilent Restricted

Hierarchical Demands · 3

as networks become more complex it may be beneficial to decompose the network further. An access
LSP may pass through a number of di↵erent layers before reaching the “core”, and each of these could be
exploited in the same way as the core/access distinction. The decomposition into core and access routers
may be specified a-priori, for example via data extracted from an OSS system. Nevertheless, it is unlikely
that any finer level of hierarchy will be explicitly stated. Even in the core/access case, we may have
to infer the boundary, perhaps with a little help from the operator, and heuristics developed for such a
task may complement topology discovery mechanisms. For these reasons we will start by considering the
decomposition problem in a setting where no hierarchical structure is known in advance. Later we will
consider the e↵ects of a predefined core/access split, particularly in the case where di↵erent groups are
responsible for these components. We may need to merge components to cover the entire core. We may
also need to split some components to achieve the required separation. The optimization tools themselves
may need to be split so they can be used by separate groups. The interface required between these tools
may be richer than that provided by existing o✏ine optimization tools if we wish to support access LSPs.

Replacing demands that span the access and core networks with aggregated demands restricted to
the core is trickier than it seems. We want to ensure that any solution we find across the core can be
extended to a solution that satisfies the original demands, particularly where the demands have QoS
constraints associated with them. We argue that we either need to have some flexibility in where we
draw the core/access boundary, or map the access demands into a more complex form of core demand,
for example where multiple ingresses and egresses are supported, or where multiple paths are acceptable.

The approach followed in this report is to develop heuristics to cluster routers into components, with
the components organized in a hierarchical fashion, and with the network “core” at the root of this
hierarchy. Demands that originate or terminate at components outside the core, but that traverse the
core, are temporarily replaced by demands that originate and terminate within the core component.
Having optimized the resulting set of demands, we show how to use the solution to satisfy the original
demands. Clearly, the success of this approach, judged by the optimality of the final solution, depends
crucially on our choice of components, and the clustering of routers into these components. We start
with a very simple clustering mechanism that gives us good guarantees about the final solution. Multi-
access networks cause some complications, and we discuss these and how to handle them in this setting.
However, the definition of “access component” is rather restricted, leading to large “core” components.
We then develop further heuristics to widen the set of access components, but our solutions may be less
optimal as a result. The report concludes with a discussion of more general access graph structures, and
the problems these generate. In particular, we consider the case where our components must respect an
existing partitioning of the routers, e.g. into core and access routers.

2. THE OPTIMIZATION PROBLEM

The starting point for our optimization problem is a set of demands across a network. Each demand
represents a requirement for a certain amount of bandwidth, with an associated tra�c class or QoS
requirement. The tra�c class constrains the acceptable routes that can be used to service the demand,
such as the maximum delay or cost. We will allow the optimization process to generate solutions that
split demands over multiple paths. Although the need for demand splitting is rare, it can be useful with
high-bandwidth demands. We assume that there will be a mechanism to split demands at the ingress if
necessary, for example in a VoIP gateway. We wish to find the best route(s) for each demand to minimize
some global criteria, such as average link utilization. Clearly there may be many optimization criteria
we could choose, but the exact choice is unimportant for the following discussion.

Optimizing the placement of demands across a network is computationally expensive. There are two
main approaches to tackling this multi-commodity flow problem. In an edge-based strategy, a linear
program (LP) attempts to compute the amount of each demand carried by each link in the network. In
the worst case, with a full mesh of demands, and a highly connected graph, there will be O

�
n2

�
demands

and O
�
n2

�
edges. The paper by Köhler [Köhler and Binzenhöfer 2003] contains five example topologies

of increasing size. Timings from a prototype solver [Mitchell 2004], presented in Figure 1, illustrate how
quickly the computation times increase as the network size grows. An edge-based strategy has another
disadvantage when the demands have additional QoS constraints attached to them. The paths found by

Agilent Restricted Agilent Technical Report, No. AGL-2004-5, May 2004.

4 · Kevin Mitchell

the optimizer may not satisfy the constraints, e.g. on delay or hop length, resulting in an invalid solution.
Attempts to enforce these constraints during the optimization process quickly lead to intractable models,
even for small networks. The edge-based approach is therefore most suited for demands with liberal QoS
constraints, such as best-e↵ort tra�c.

Fig. 1. Optimization times for various network sizes

The other main approach is to first identify a set of potential paths for every demand, each of which
satisfies the QoS constraints. We can then use a linear program to calculate how much of the demand
should be carried by each path. If we only use a small number of paths for a demand then we can limit
the size of the optimization problem to something tractable. The downside is that our solution is only
as good as our choice of paths. If we increase the number of paths, to increase the chance an optimal
solution is found, then the optimization times grow very quickly, particularly for highly connected graphs.
This behavior is illustrated in Figure 1, where Path 10 uses a maximum of ten paths for each demand,
and Path50 uses a maximum of fifty. For demands with strict QoS properties, our best strategy is to
use a path-based approach and hope that the number of valid paths for each demand is fairly small.
However, as the network size increases, we quickly reach the stage where optimization times become
intractable. The case where there are multiple paths through the access network also creates di�culties
for the path-based approach. If we just enumerate the first “n” paths, using something like A*Prune
[Liu and Ramakrishnan 2001], we may find that most of these paths share a common subpath across the
core. In many cases we will want more variability in the paths in order to find a good solution to the
optimization problem.

For these examples to scale to networks with hundreds or thousands of endpoints we need to discover
hierarchical structures within the network, together with heuristics to exploit such structures without
departing too far from the optimal solution.

3. ACCESS TREES

Figure 2 illustrates a typical backbone network. There are approximately 120 nodes in this network.
Even with a single tra�c class, with demands between each pair of devices, we generate a problem that
would be very expensive to optimize directly. It seems clear we need to find heuristics for simplifying the
demand placement problem if we want to tackle problems of this scale, or larger.

One way of simplifying the optimization problem is to identify, and then exploit, particular properties
of the network under investigation. For example, if some form of hierarchical structure can be identified
then we may be able to split the problem into two or more simpler problems. Of course, the challenge
in such cases is to ensure that the combined solution to the simpler problems is close to the optimum
solution of the original problem. The problem is complicated by the fact that networks come in lots
of di↵erent shapes and sizes. An optimizer might need to exploit a range of di↵erent heuristics for the
demand placement problem depending on the structure of the network being optimized.

Agilent Technical Report, No. AGL-2004-5, May 2004. Agilent Restricted

Hierarchical Demands · 5

Charlotte

Portland

Providence

Newark

Cedar Knolls

Syracuse

Buffalo

White Plains

Rochester

Columbia

New Orleans

Nashville

Austin
Houston

TulsaOklahoma
City

Albuquerque

Phoenix

AnaheimAnaheim

Las Vegas

Salt Lake
City

Colorado
Springs

Milwaukee

Detroit

Columbus

Cincinnati

Seattle Spokane

Portland

Louisville

Little Rock

Jacksonville

Ft. Lauderdale

Miami

Raleigh
Richmond

Denver
Indianapolis

Pittsburgh

Baltimore

Plymouth

Atlanta

Minneapolis

Gardena

Tampa

San
Bernardino

Arlington

Ft. Worth

Rochelle Pk

Honolulu

Orlando

Sherman Oaks

Ojus

Hamilton
SquareSilver

Springs

Wayne

Chicago

Rolling
Meadows

Omaha

St Louis

San Diego

Anchorage, AK

N X OC48

Backbone Node

Gateway Node

N X DS3
N X OC3

Remote Access Router

R Remote GSR Access Router

N X OC12

NX OC192

Cambridge

Framingham

Stamford
Bridgeport

Grand
Rapids Providence

Glenview
Albany

Sacramento

Oakland

Redwood
City

San Jose

San
Francisco

ChicagoSan
Francisco

Florissant

Davenport

Worcester

Madison

Camden,
NJ

Norcross

New Brunswick

Birmingham

San Antonio

Oak
Brook

South Bend

Dayton
Bohemia

Hartford

San Juan PR

W. Palm Beach

HarrisburgDes Moines

Memphis

Greensboro

Norfolk

R

Kansas
City

AkronRR

R

Los Angeles

Dallas

Wash.
DC

St. Paul

Freehold

R

Manchester

R

R

R
Ft.

Lauderdale

Dunwoody

R

R

R

Phil

NYC

Cleveland

R

R
NYC-
Bdwy

Birmingham

LA-Airport
Blvd

AT&T IP Backbone
Year end 2001

Rev. 6-4-01

Fig. 2. AT&T IP backbone, 2001

We start by developing a heuristic that might be appropriate for the AT&T example shown in Figure 2.
One obvious feature of the example is the large number of leaves, corresponding to the “access” part of
the network. Therefore, whilst there are about 120 nodes in total, approximately three quarters of these
are “leaf” nodes. If we could somehow remove these from the problem, optimize the residual graph, and
then extend the solution to incorporate the demands associated with the leaf nodes, we might have a
tractable solution to this particular network.

How do we identify structures such as leaf nodes, or the edges forming the access part of the network?
We could exploit information provided by the network topology. For example, a node may have a type and
be associated with an autonomous system (AS). We could standardize the type information, allowing us
to identify access routers. We could also use the AS information to suggest a hierarchical decomposition
of the graph. Nevertheless, whilst such information may be useful as “hints”, a more robust solution
would examine the structure of the graph itself.

3.1 The Core/Access Tree Partitioning Algorithm

We start by imposing a forest structure, i.e. a set of trees, on the nodes in the network graph. Let Nodes
be the set of nodes, or vertices, in the graph. We define a map, parent, representing a total function on
Nodes, i.e.

parent : Nodes! Nodes

By construction, we will ensure this map implicitly defines a set of trees, i.e. there will be no sequence of
vertices, v

1

, v
2

, . . . vn, such that 81  i < n · parent(vi) = vi+1

and where v
1

= vn. However, we indicate
tree roots by vertices v such that parent(v) = v, and so we relax the acyclic rule accordingly. By this we
mean that the only cycles permitted are those involving root nodes. We use the parent map to partition
the set of vertices into root nodes and tree nodes.

We initialize the map such that parent(v) = v for all nodes, i.e. they all start as root nodes. We then
apply the following procedure repeatedly:

Find a root node v with n outgoing edges in the graph, for some n > 0. Let the destinations

Agilent Restricted Agilent Technical Report, No. AGL-2004-5, May 2004.

6 · Kevin Mitchell

of these edges be v
1

, v
2

, . . . , vn. If there exists a root vp, p 2 {1..n} such that

8i 2 1..n, i 6= p · parent(vi) = v

then set parent(v) := vp.

Each time this transformation is applied a vertex changes from being a root node to a tree node. Fur-
thermore, the procedure never changes a tree node back to a root node, and so the process is guaranteed
to terminate. Although not proved here, the map we end up with does not depend on the order in which
we transform the nodes.

At the end of this process the root nodes will form the core of our network, and the tree nodes the
access component, as illustrated in Figure 3. For the AT&T example each tree will have a depth of one,

Fig. 3. The core and access components

but in other examples it may be larger than this.

3.2 Demand Simplification

For each root node r there is a set of nodes, possible empty, that form the tree attached to this node, i.e.
the set of nodes that can reach r using the parent map. We will call this set the access tree attached to
r. For each such tree, T , there may be some demands with both the ingress and egress local to T . By
definition, there is a unique shortest path between the ingress and egress in such a case. Whilst longer
paths exist, these must traverse the same links as the shortest path, plus possibly others, and so there is
no point in considering longer paths for such demands in an optimum solution. Placing such demands is
simple. Our only choice is whether to place them first, and then optimize the rest of the demands, or to
place them afterwards. If we assume that all demands can be satisfied then it will make no di↵erence in
which order we place these demands.

Having taken care of the “local” demands then we are left with demands of the following forms:

(1) Both the ingress and egress are within the core.

I E

Agilent Technical Report, No. AGL-2004-5, May 2004. Agilent Restricted

Hierarchical Demands · 7

(2) The ingress and egress are within distinct trees.

I A EB

(3) Either the ingress is in the core, and the egress in a tree, or vice versa.

I E I EA B

Our strategy is to transform demands of form 2 or 3 into demands purely internal to the core. We can
then solve an optimization problem on the core and use this to place the type-2 and type-3 demands.
Consider a type-2 demand. Any path from I to E must pass through nodes A and B. Furthermore, any
path from I to A must pass along the edges forming the unique shortest path from I to A. Similarly
for B to E. So if we find an optimum placement of the demand from A to B we can easily extend it
to a solution from I to E. Furthermore, our intention is to map paths into MPLS label switched paths
(LSPs). MPLS supports tunnels, and so a demand from I to E could be implemented by an LSP from
I to E that used another LSP to tunnel from A to B. This suggests the following approach. Given a
demand dIE from I to E we find the demand dAB from A to B with the same tra�c class as dIE , creating
a new one if necessary. We then add the bandwidth requirement of dIE to dAB and (temporarily) remove
the demand dIE . We do this repeatedly until there are no more type-2 demands left.

The type-3 demands are treated similarly, either adding the bandwidth to a demand from A to E or
from I to B. At the end of this process we will be left with just a set of type-1 demands. We now need to
place the demands across the core network, i.e. the subnetwork only involving core nodes. Depending on
the size of the core network, we may be able to solve this problem directly, or need to use further heuristics
to break the problem down to a more manageable size. For the AT&T example the initial problem has
122 nodes, and 14762 demands, a complete mesh with a single tra�c class. After the transformations,
we are left with a core network of 27 nodes, and 702 demands. Clearly this is a much more manageable
problem which we should be able to solve directly in this case.

Most demands will be satisfied by the solver using a single path. This will be mapped to a single LSP
by the provisioning system. Now consider our example of a type-2 demand from I to E. The demand
from A to B will be mapped to LSPAB . The demand from I to E will be mapped to an LSP that follows
the unique path from I to A, followed by the tunnel LSPAB , and then the unique path from B to E.
In a few cases the solver may split the demand from A to B across multiple paths. These will map into
multiple LSPs, LSPAB1 and LSPAB2 say. We have two choices here. We could split the demand from
I to E into two paths using the same proportions as the core demand was split. One path would be
tunneled over LSPAB1 and the other over LSPAB2 . But if there are multiple demands being tunneled
over this core demand then it would make sense to assign each access demand to a single tunnel where
possible, only splitting them where necessary.

A more verbose example might help here. Suppose we had the situation illustrated in Figure 4.
Furthermore, we assume the following three demands need to be satisfied:

Agilent Restricted Agilent Technical Report, No. AGL-2004-5, May 2004.

8 · Kevin Mitchell

CoreAccess

N1

N4

N3

N2

Fig. 4. Splitting demands across the core network

D
1

N
1

)N
4

, 10 units
D
2

N
2

)N
4

, 10 units
D
3

N
3

)N
4

, 10 units

As N
1

and N
2

are part of the access network we would (temporarily) remove D
1

and D
2

, and increase the
reservation for D

3

to 30 units. Suppose, after calling the solver, we have two paths between N
3

and N
4

,
with one path, P

1

, having a reservation of 10 units, and the other, P
2

having a reservation of 20 units.
We would generate two LSPs, LSP

1

and LSP
2

, corresponding to these two paths. We now have to map
the original demands to LSPs, and there are multiple ways of doing this. We could map D

3

to LSP
1

, and
then map D

1

to LSP
3

which starts at N
1

and tunnels to N
4

using LSP
2

. Similarly we would map D
2

to
LSP

4

, that starts at N
2

and tunnels to N
4

using LSP
2

.
Now suppose the solver had allocated 15 units to both P

1

and P
2

, i.e. LSP
1

and LSP
2

can carry 15
units each. We would then map D

3

to LSP
1

and D
1

to LSP
3

, tunneling over LSP
2

. Finally, we would map
D
2

to two LSPs, LSP
4

, tunneling over LSP
1

, with 5 units capacity, and LSP
5

, tunneling over LSP
2

, with 5
units capacity. Given that the solver rarely splits demands, in most cases there will be no choice about
how to map the solution to the original demands. In the cases where there are choices, each solution will
have the same network utilization, but some may be better than others in terms of the total number of
LSPs. This could be formulated as another optimization problem, but the situation will occur su�ciently
infrequently that any mapping will probably lead to an acceptable solution.

The situation with type-3 demands is treated similarly. In the case where the demand starts in the
tree, we could use label merging, rather than tunneling, if the LSP signaling mechanism supports this.
In the case where the egress is in the tree then merging isn’t an option, and so we just push both labels
on the tree at the ingress.

4. QOS CONSTRAINTS

The approach of mapping demands across the access trees into demands across the core becomes more
complex when there are quality of service (QoS) constraints attached to the demands. To see why,
consider a simple scenario where we attach an additive constraint, such as a hop limit, to each demand.
Suppose all demands are associated with a tra�c class with a hop limit of five. By this we mean that the
only paths that can satisfy such a demand must have a length no greater than five. Now consider a type-
2 demand between I and E. Our algorithm translates this into a demand between A and B. But which
demand? If there is already a demand between A and B it is tempting to just increase the bandwidth
reservation on this demand. After all, the optimization times are influenced not just by the size of the
network but also by the number of distinct demands being placed across the network. In the absence of
QoS constraints, such a translation would be valid. However, in our example it will lead to erroneous
results. To see why, consider the case where I and A are connected by a point-to-point link, and similarly
for B to E. Given that it takes one hop to enter the core network, and one hop to reach E from the core
network, we are only allowed three hops to traverse the core from A to B if we wish to satisfy the QoS
constraint. However, if the existing demand from A to B has a QoS limit of 5 then the placement solution

Agilent Technical Report, No. AGL-2004-5, May 2004. Agilent Restricted

Hierarchical Demands · 9

for this demand may not be suitable as a solution for the IE demand. This suggests that in such cases
we should construct a new demand from A to B with a more restrictive QoS constraint, in this case a
hop limit of three. A similar argument applies with other additive QoS constraints, such as maximum
delay or cost.

In the worst case, we may end up with hundreds of demands between A and B, di↵ering only in their
QoS constraints. Our reduced problem would have a smaller number of nodes, but the same number of
demands, potentially still giving us a problem no more tractable than the original. Nevertheless, there
are reasons for hope here. In practice there are likely to be many nodes in the access tree containing I
that wish to reach E and other nodes within E’s access tree. If they all have the same number of hops
to travel to reach the core, which will be a common case, then they can all share a demand from A to B
with the more restrictive constraint. Delay and cost constraints are obviously trickier, as it will be less
likely there will be an exact match. However, we can trade o↵ optimality for speed here, by mapping an
access demand to an existing core demand with a more restrictive constraint, rather than creating a new
one. We anticipate using such demand and tra�c class merging even within the core network when there
are many di↵erent tra�c classes. This scenario is just another example of where it would be useful. The
path-based approach to optimization introduces further potential for demand merging. The purpose of
the demand classes is to restrict the set of paths that are acceptable for a given demand. In many cases,
we may generate the same set of paths for two demands, even though they have di↵erent tra�c classes.
In a path-based approach we can merge any demands for which we generate the same set of candidate
paths, and then use the aggregated demands in the linear program.

In the case of the edge-based optimization strategy we could adopt a di↵erent approach to this problem.
The edge-based optimizer ignores QoS constraints during the optimization process. The edge allocations
are translated to paths during a post-processing phase, and then these paths are checked to see if they
respect the desired QoS constraints. Whilst this has the disadvantage that some demands may violate
their QoS constraints in the “optimal” solution, it does simplify our current problem. We would map
the access demands to the core demands in the same way as if there were no QoS constraints. When
constructing paths for these access demands we would choose the tunnels based on the strictness of the
QoS constraints. For example, consider the situation illustrated in Figure 4 again, where the solution
identified two paths between N

3

and N
4

, with P
1

, having a reservation of 10 units, and P
2

having a
reservation of 20 units. If P

2

were shorter than P
1

then we would use it as our preferred tunnel for D
1

and
D
2

, using P
1

for D
3

. Of course, there may be no way of assigning the tunnels to the access demands that
satisfies the QoS constraints. However, this is just another symptom of the mismatch between edge-based
strategies and tight QoS constraints.

5. MULTI-ACCESS NETWORKS

All the links in our previous examples have been point-to-point links. However, these are not the only
kinds of link we have to consider. Multi-access networks, built using ethernet or similar technologies,
will often be found in the access component of the network. We need to be able to recognize such
networks, separating them out from the core where possible. They must also be treated specially from
the perspective of the optimizer.

Figure 5 a) illustrates a common situation. By introducing a new “network” node, and replacing each
multi-access link by a point-to-point link to the network node, we reach the position shown in Figure 5
b). Most of the routers attached to the network will be leaves, and the tree/core partitioning algorithm
will place them in the access network, as desired. However, in the case of some multi-access networks, the
logical links connected to the network node may not be truly independent of each other. Assigning some
bandwidth to one path traversing the network node may constrain how much bandwidth can be assigned
to other paths traversing this node. So simply assigning bandwidth constraints to individual links may
be insu�cient in such cases. One approach would be to attach a bandwidth constraint to the network
nodes themselves. The sum of the bandwidth required by all demands traversing this node would then be
constrained to be less than this limit. However, since most networks do not exhibit such dependencies,
at least not to the extent that they need to influence the placement process, we ignore such complexity
in this document.

Agilent Restricted Agilent Technical Report, No. AGL-2004-5, May 2004.

10 · Kevin Mitchell

Core

Access

a) Physical b) Logical

Fig. 5. A multi-access subnetwork

As with the pure point-to-point case, there may be some demands where the ingress and egresses are
confined to a single access tree, in this case comprising nodes attached to the same multi-access network.
We can either choose to place these demands before or after we optimize the core network. We can often
make the simplifying assumption that link delay and cost between each pair of nodes connected to the
multi-access network will be the same. If there were substantial di↵erences in these metrics, for example
because the access network is provided by an ATM cloud, then we would have to model the multi-access
component by a full mesh of point-to-point links. This allows us to specify the link metrics for each pair
of end-points, but our access/core distinction would break down in this case, forcing us to treat all these
nodes as part of the core. We would adopt the same approach if something like an ATM cloud were
deployed within the core of the network.

Whilst the introduction of virtual network nodes may allow us to decouple a multi-access network from
the network core it complicates the post-optimization processing. To see why consider the scenario where
a demand originating in the multi-access network is replaced by a demand originating at the network
node. If the multi-access network has multiple entry points into the core then the network node will end
up being treated as part of the core during the optimization process. The optimizer will compute one
or more paths to carry the demand originating at the network node. However, this node doesn’t really
exist, so we can’t simply map these paths to LSPs. The first hop in each of these paths will be to a real
router within the core, and we can use this router as the ingress for the LSP associated with the path.
The original demands would tunnel through these LSPs, just as in the point-to-point case.

6. ACCESS GRAPHS

It is not hard to find examples of access networks that are more complex than simple trees. Figure 6
illustrates two such examples. In this network router A has two paths into the core, whilst router E

A

B

C

D E

F

G

H

Fig. 6. Examples of Access Graphs

has four paths. The access tree analysis is insu�cient for such networks, resulting in everything being
treated as part of the core. Not only may this lead to a graph that is too large to optimize, but our path
selection process may also produce a poor set of candidate paths. Ideally we want to ensure that most

Agilent Technical Report, No. AGL-2004-5, May 2004. Agilent Restricted

Hierarchical Demands · 11

of the variability in these paths isn’t confined to links close to the ingress. If there are multiple paths
through the access component it can be di�cult to achieve this ideal.

When an access graph has many links into the core it will be di�cult to tease it out from an optimization
standpoint. The access/core distinction is more administrative than topological in these cases. However,
in our example the situation is simpler. We know where demands originating at A will reach the core,
and if they are destined for router E we also know where the paths for these demands will leave the core.
Routers D and H act as bottlenecks that can be exploited to split o↵ the access components.

The problem with trying to replace a demand originating at node A and terminating at node E in our
example is that there are multiple paths both to and from the core. So what QoS constraint should we
associate with the replacement demand from D to H? Each path from A to D may have a di↵erent cost,
and so the additive constraints, such as hop limit, delay or cost, for the replacement demand originating
at D would depend on the path taken to reach D. We could imagine building a system where the optimizer
could work with demand choices. I.e. given a choice set d

1

, d
2

, . . . , dn the optimizer would only have
to satisfy one of these demands. We could enumerate all the di↵erent paths to reach the core network,
calculate the di↵erent costs, and then generate one demand for each cost. But this just replaces the
original problem with an even worse one. For example, if we assume that all the paths through the
access networks have di↵erent costs, we would end up replacing the original demand from A to E by eight
di↵erent demands from D to H! Of course, not all of these will necessarily result in di↵erent candidate
path sets, and so the linear program might not have to deal with eight demands. Nevertheless, this isn’t
the road to a scaleable solution.

For access graphs with a unique entry point into the core, we can make the simplifying assumption
that all tra�c will reach this point using the least cost route through the access network. Having made
this assumption, we can calculate the QoS constraint for the replacement path across the core. Having
optimized the core demands we can then build the access demands using the core LSPs as tunnels.
Loosely routing these LSPs, i.e. just constraining them to use particular core LSPs, leaves the runtime
with some flexibility for traversing the access networks. Of course, there is no guarantee that we will be
able to satisfy all these demands in the access component with the required QoS bounds.

For this approach to work we need to identify access components with single entry-points into the rest
of the network. Our approach starts by identifying biconnected components within the graph. First, we
need some definitions.

Definition 6.1. A vertex v in a connected graph G is an articulation point if the deletion of v from
G, along with the deletion of all edges incident to v, disconnects the graph into two or more nonempty
components.

Definition 6.2. A graph G is biconnected if and only if it contains no articulation points.

Definition 6.3. G0 = (V 0, E0) is a maximal biconnected subgraph of G if and only if G has no
biconnected subgraph G00 = (V 00, E00) such that V 0 ✓ V 00 and E0 ✓ E00. A maximal biconnected subgraph
is a biconnected component.

Lemma 6.4. Two biconnected components can have at most one vertex in common and this vertex is
an articulation point.

Partitioning the graph edges into a set of biconnected components is a fast operation [Sedgewick 2001].
Figure 7 illustrates the result of such an analysis, where the edges have been tagged with their component
identifiers. Vertices with edges from more that one component are the articulation points. The cloud
represents the “core” that we are trying to identify.

A biconnected component consists of all the edges with the same component number, together with
the nodes they connect. What can we do with such an analysis? How do we (reliably) distinguish core
from access? Given an ingress and an egress they are either both in the same component, or there is a
unique path of components to get from the ingress to the egress (assuming the two points are connected).
The component path is guaranteed to be unique as the components form a tree, as illustrated in Figure 8.
Note that this is an unrooted tree, and so at this stage there is no concept of moving from the edge of a

Agilent Restricted Agilent Technical Report, No. AGL-2004-5, May 2004.

12 · Kevin Mitchell

Fig. 7. Complex access graphs

2 1

3

6

4

7

8

9

10

0

5

11

Fig. 8. Biconnected components

network to the core. The black nodes are the articulation points. Therefore, a router will either be an
articulation point in this tree or part of a component in the tree, i.e. in one of the clouds.

6.1 Merging access trees

Before trying to order the components, to give us the core/access distinction we require, we need to
simplify the graph. Access trees occur frequently in networks, and produce many small components
when the network is split into biconnected components. To illustrate this behavior consider the network
in Figure 9. The components generated by this example are shown in Figure 10, where the components,
excluding the articulation points, contain the following nodes:

Agilent Technical Report, No. AGL-2004-5, May 2004. Agilent Restricted

Hierarchical Demands · 13

Fig. 9. A simple access tree

n3

n4 n5

0

1 2

3 4 5 6

Fig. 10. The components generated for the simple access tree

0 {n
1

,n
2

}
1 {}
2 {}
3 {n

6

}
4 {n

7

}
5 {n

8

}
6 {n

9

}

Given our intended usage of these components, to identify bottleneck nodes between the access networks
and the core, we can merge the components containing the access trees to simplify the graph.

Definition 6.5. A component C is a tree component if it is connected to a single articulation
point, x say, and the nodes within the component, including x, are connected to each other by edges that
form a tree in the original graph, with x as the root of this tree.

In our previous example we can immediately identify component 3 as a tree component. It only has
a single node, and this node, together with the articulation point n

4

, form a trivial tree. Similarly for
components 4, 5 and 6. We now define rules for merging tree components. The first rule is illustrated by
Figure 11. In this figure we are using T as an annotation on the component clouds to indicate that they
represent tree components. Why is this transformation legitimate, i.e. why is the merged component
also a tree component? This follows trivially from the fact that there can be no edges between C

1

and

Agilent Restricted Agilent Technical Report, No. AGL-2004-5, May 2004.

14 · Kevin Mitchell

C1 C2

n n

C1 � C2

T T T

Fig. 11. First tree merging rule

C
2

, because if there were they would not have been separate components in the first place. To see why,
suppose there were an edge e between a node in C

1

and a node in C
2

. Then there would be two paths
between any node in C

1

and a node in C
2

, one via e and the other via n. So C
1

and C
2

would be
biconnected, and would not have been split in the first place.

Our transformation step can be used repeatedly to merge siblings, but we also need a rule to merge
the children with their parent when a tree has a depth greater than one. A transformation to perform
this task is illustrated in Figure 12. Why is this transformation valid? The node r and n must be

n

T

r

�

C

r

C � {n}
T

Fig. 12. Second tree merging rule

connected by a single edge, as the intermediate component is empty. Furthermore, n is the root of the
tree component C. Therefore, r must be the root of the tree component C[{n}. By repeated application
of these transformations, we can collapse the access trees into tree components. For our original example
this process results in the graph presented in Figure 13. In this figure we have used x [y to denote the
component containing the union of the nodes in component x and y.

1 � 2

3

6

4

7 � 8

0

5

11

9 � 10

Fig. 13. Merged components

Agilent Technical Report, No. AGL-2004-5, May 2004. Agilent Restricted

Hierarchical Demands · 15

We will still use the terms “articulation point” and “biconnected component” when discussing the
transformed tree, even though strictly-speaking this is incorrect. Trees that connect more general access
graphs to a core component will not be detected by these transformations. It remains to be seen whether
such situations occur frequently enough to be worth detecting and exploiting. It is hard to formalize
transformations such as these when the component tree has no root, and therefore no “direction” at this
stage. This suggests a second stage of simplification should take place after the network core has been
identified.

6.2 Determining the network core

Our component graph imposes some structure on the original graph, but there is still no concept of
moving from an access component towards the core. We need to make the component tree rooted, where
the ”core” is the root. This will then define an ordering between components, and supply the required
concept of moving from the access to the core. We could clearly choose any of the clouds as being the
root, but which one is most likely to represent the core of the network? There are a number of heuristics
we could employ to pick the core component. However, they will all fall foul of pathological examples,
potentially requiring user intervention to guide this process. For example, picking the largest component,
including its articulation points, seems plausible, except that we might have a very large access tree with
more nodes than the true core. Similarly choosing the component with the smallest maximum path length
to all the other components seems reasonable, as it would tend to find the component in the ”center” of
the tree. However, an access graph with many hops will tend to derail such an approach, with one of the
components at the top of this access graph chain potentially being identified as the core.

A more robust heuristic might be to choose the component whose average path length to all the other
components is minimized. The path lengths for our example are presented in Figure 14. In this figure we

0 1[2 3 4 5 6 7[8 9[10 11 Average
0 0 1 1 1 1 1 2 2 2 1.2

1[2 1 0 2 2 2 2 3 3 3 2.0
3 1 2 0 2 2 2 3 3 3 2.0
4 1 2 2 0 2 2 1 1 3 1.6
5 1 2 2 2 0 2 3 3 1 1.8
6 1 2 2 2 2 0 3 3 3 2.0

7[8 2 3 3 1 3 3 0 2 4 2.3
9[10 2 3 3 1 3 3 2 0 4 2.3

11 2 3 3 3 1 3 4 4 0 2.6

Fig. 14. Average path lengths from each component

have counted the hops from component to component, i.e. ignoring the articulation point nodes. Using
the average length as our measure would result in component 0 being chosen as the root, which matches
with our intuition. Given this choice of root we can order the tree links to introduce the concept of
moving towards and away from the core, as illustrated in Figure 15.

0

1 � 2 3 4 6 5

7 � 8 9 � 10 11

Core

Access

Fig. 15. Rooted tree of components

Agilent Restricted Agilent Technical Report, No. AGL-2004-5, May 2004.

16 · Kevin Mitchell

6.3 Fine-tuning

No heuristic is always going to be perfect. There are two things that could go wrong with this one. We
might pick the wrong root entirely. This is easy to remedy. The optimizer application would highlight
what it thought constituted the core component. If this were incorrect then the application would just
need a mechanism for the user to select an alternative router. The component containing this router
would then be treated as the core component.

The other problem stems from our intended usage of these distinctions. The next section describes in
more detail the demand replacement process. However, crudely speaking, the strategy is to move demands
up the component tree, optimize the demands once they reach the top, and then use the resulting LSPs
as tunnels to support the original demands. This approach creates an asymmetry between components.
To see why, consider an example where the core itself is partitioned by an articulation point, illustrated
in Figure 16. One of these components will be chosen as the “core” and the other as just part of the

Fig. 16. A core with two components

access graph. The problem here is that we will end up optimizing paths though only part of the core,
with the other part using e↵ectively shortest-path first routing. At this point we presumably need human
intervention, to make our true intentions clear. However, the extent of this intervention could be relatively
painless. Just as we can alter the core component by selecting a single node in another component, rather
than all the nodes that make up the new core, here we could add the facility to merge components to
make a bigger core. For example, suppose the system had chosen the left-hand large component as the
core, and the right-hand component contained the node n. All we would have to do, having noticed that
n wasn’t in the core, would be to select it and ask that the component containing n be added to the core.
This would result in the component graph shown in Figure 17. The modified component graph would

Fig. 17. Merging the core components

allow all paths through the core to be optimized. The user could also extend the core into some of the
more complex access structures if desired, using the same mechanism. Such a mechanism could give us
a flexible way of bounding the running time and complexity of the optimization step without requiring a
lot of manual intervention from the user. Of course, we may have situations where the core component,
rather than being too small, is too large. We address this situation in Section 8.

Agilent Technical Report, No. AGL-2004-5, May 2004. Agilent Restricted

Hierarchical Demands · 17

7. DEMAND REPLACEMENT AND OPTIMIZATION

Section 3.2 replaced demands that originated or terminated in the access trees with new demands that
just spanned the core. The core demands were then optimized and the solution used to build paths for
the original demands. This approach is no longer adequate when we have more general access topologies.
We need an alternative mechanism that can deal with components made from graphs, not just trees.
Our strategy will be similar in spirit to the tree case; we will replace demands that originate in the
access network with others that just span the core. However, there will be two crucial di↵erences. We
may need to traverse multiple components before we reach the core. We may also need to perform an
optimization step for each of these components as there are now multiple paths across (some of) these
access components. Before describing the demand replacement and optimization process in detail, we
need some definitions.

Observation 7.1. All rooted component trees will have a component at the root, components at the
leaves, and with adjacent components being separated from each other by articulation points.

A component is a set of nodes with a unique identity. Whilst no node can appear in more than one
component, components may contain an empty set of nodes. The sets themselves are therefore insu�cient
to distinguish between components. Where it causes no confusion, we will use a component as if it were
the node set. Given a component C we will use AP (C) to denote the articulation points directly attached
to C, i.e. the nodes connected to C by a single edge in the component tree. We will use C+ to stand for
the set C [AP (C).

Definition 7.2. Every node n in the original network is either an articulation point in the component
graph, or a member of a component in this graph. The function C records this relationship:

C(n) =

(
n if n is an articulation point;
C if n 2 C.

Theorem 7.3. Given any two nodes n
1

and n
2

in the original graph, with a path between them, there
will be a unique acyclic path between C(n

1

) and C(n
2

) in the component tree. This path will consist of a
chain of alternating components and articulation points.

Proof: A node cannot be both an articulation point and a member of a component. Furthermore, all
articulation points are distinct, and the component sets are all disjoint. So C(n

1

) and C(n
2

) are unique
nodes in the component tree. By definition, there is a unique path between these points in the tree. By
Observation 7.1 this path must consist of an alternating chain of components and articulation points.

Definition 7.4. The component path between two nodes n
1

and n
2

in the network is the sequence
of components obtained by removing the articulation points from the unique acyclic path through the
component tree between C(n

1

) and C(n
2

).

Lemma 7.5. There is a unique component path for each demand; it is the component path from the
ingress to the egress.

Definition 7.6. A singleton demand has identical ingress and egress nodes.

Section 7.2 illustrates how singleton demands may be created as part of the process of lifting the demands
up the component tree.

Definition 7.7. A demand is local if the component path for the demand has length  1, and is
non-local otherwise.1

Definition 7.8.
The ingress component of a demand d is the first element in the component path for d.

1We allow the length to be zero for the degenerate case of a singleton demand at an articulation point.

Agilent Restricted Agilent Technical Report, No. AGL-2004-5, May 2004.

18 · Kevin Mitchell

The egress component is the last element in this path.
A demand d traverses component C if C is in the component path for d and is neither the
ingress or egress component.

Associated with every component C is a set of demands D(C). These are the demands whose component
path includes C. Every component also has a set of child components, CS(C), possibly empty. These are
the descendents of C in the component tree connected to C via a single articulation point.

Definition 7.9. D(C) = {d | C is an element of the component path for demand d}

Definition 7.10. CS(C) = {C 0 | 9AP · C 0 ! AP ! C is a path in the component tree }

If all the demands in D(C) are local to C then we can optimize the routing of these demands across
the component without considering any other components. Where we encounter demands that are not
local, our strategy will be to replace them by demands that start or finish higher in the component
tree. By repeatedly applying this process, all the demands will eventually become local demands of some
component. More precisely, given a non-local demand from ni to ne we will lift it up to the lowest common
ancestor of C(ni) and C(ne) in the component tree. This might be a component or an articulation point.

The complicating factor in this process is the QoS constraints attached to each demand. These define
the acceptable paths for the demand. When we replace a demand by another one that starts or finishes
higher in the tree, we must calculate new QoS constraints that take into account the cost of reaching
the new endpoint from the original one. When all components were access trees we could do this in a
single step. The paths though the access trees were unique, and so it was trivial to compute the cost
of traversing these paths. However, in the more general case there may be multiple paths though each
component, raising the question of which cost we should use. Consider the case where the lowest common
ancestor of a demand d, with ingress ni and egress ne is the component Ca. Furthermore, for simplicity
assume that neither ni or ne are elements of C+

a . This situation is illustrated in Figure 18. There will
be a unique sequence of components, hC(ni) = C

1

, C
2

, . . . , Ck = Cai, for some k >= 2, that must be
traversed in order to reach Ca from the ingress. There will be another sequence of components that must
be traversed to reach the egress from Ca. Furthermore, the path from C(ni) to Ca will enter via some
articulation point, APi say, and leave Ca via another articulation point, APe. These two nodes will be
di↵erent, as otherwise, this articulation point would be the lowest common ancestor, not Ca.

ni

ne

APi APe

d

d'

Ca

Fig. 18. Lifting a demand up the component tree

Let d0 be the replacement demand with ingress APi and egress APe. What QoS constraint should be
attached to this demand? We need to determine the cost of traversing all the components between ni

and APi. We also need the cost from APe to ne, but this can be treated in a similar way, and so will
be ignored in the following discussion. We could use the shortest route costs across the Ci components.

Agilent Technical Report, No. AGL-2004-5, May 2004. Agilent Restricted

Hierarchical Demands · 19

This would allow us to lift the demand up to APi in a single step. However, we may find that the solution
we generate may be invalid. There may be insu�cient capacity in the access components to route all the
non-local demands using the shortest possible routes. The other extreme, where we use the worst-case
cost estimate for each component, may result in a demand between APi and APe with a QoS constraint
that is so restrictive that no path can satisfy it. Our strategy will be to lift the demands up the tree
one component at a time, optimizing as we go along. This guarantees that each demand can be routed
through the child component(s), whilst ensuring that the lifted demand is not excessively restricted by
its QoS constraint.

If d is a non-local demand originating at I then we will split it into two parts, dl and dr. This process
is illustrated in Figure 19. In the case of an ingress component demand dl will form the local leg, and dr

the remainder of the route to E. The original demand d has a QoS constraint associated with it. This
might constrain the total delay permissible along any path used to carry tra�c for d for example. Clearly
such a limit has to be split between dr and dl. The more freedom we give to the routing across dl the
less we have for routing dr, and vice versa. If there is a unique path from I to the articulation point
AP then there is no choice. The cost for dl is fixed by this path, and so we can just subtract this from
the original cost to determine the QoS constraint to use for dr. However, in the more general case there
will be many ways of splitting the QoS constraints. Our strategy will be to first solve an optimization
problem for the component containing I. We will give preferential treatment to demands such as dl to
increase the likelihood they will be allocated the shortest possible routes through the component. Once
we have assigned a path to dl we can use this to compute the remaining QoS quota for the dr demand. A
similar strategy is used when the arrows are reversed and we are processing the egress component for d.
Having determined the QoS constraint required for dr we can then delegate its placement to the parent
component. Once the whole tree has been optimized we use the paths chosen for dr and dl to determine
the path to use for d.

From this discussion we see that a demand d will either be assigned a set of paths, in the case of a local
demand, or a pair of demands (dl, dr) otherwise. We refer to these alternatives as the carrier of demand
d, and define a partial function Carrier

��
to record this association.

Carrier = Demand 7! (Demand⇥Demand)� F(Path)

Initially the carrier will be undefined for all demands. The purpose of the algorithm is to set the carriers
in a way that satisfies the QoS constraints of the demands. We describe more precisely what we mean
by “satisfies” after presenting the algorithm. Strictly speaking, it is not su�cient to just assign a set of
paths to a demand; we also need to know how much of the bandwidth should be allocated to each of the
paths. For ease of exposition we ignore this detail in what follows.

7.1 The algorithm

We start by constructing a queue Q of components by performing a postorder traversal of the component
tree, skipping the articulation points. The purpose of the algorithm is to define paths for all the demands
in the system. A local demand will be allocated one or more paths during the optimization of a component.
In the case of a non-local demand the association with paths is implicitly defined by the carrier (dl, dr).
We use the set U to record the collection of unprocessed demands. Initially U will contain all the
demands. The algorithm processes each component in Q until the queue is empty, maintaining the
following invariant:

Invariant 7.11. Let C be the component at the head of Q.

8d 2 U \D(C) · 8C 0 2 CS(C) · d 62 D(C 0)

In other words if a demand is not local then it must leave or enter C via the unique parent articulation
point for C.

Lemma 7.12. Let C be the component currently at the head of Q. If Invariant 7.11 holds then for all
demands in U \ D(C) either the ingress or the egress (or both) are members of C+; the demand cannot
just be traversing this component.

Agilent Restricted Agilent Technical Report, No. AGL-2004-5, May 2004.

20 · Kevin Mitchell

AP

d

I

E

dl

dr
AP

d

E

I

dl

dr

a) Ingress component b) Egress component

Fig. 19. Demand carriers

Proof: Consider a non-local demand d, with ingress I and egress E. As no demands traverse child
components of C this implies C must have a parent component Cp and a unique articulation point AP
connecting C to Cp. If I is not a member of C+ then the demand must pass through Cp and AP before
reaching C. If E is not a member of C+ then the demand must also pass through AP and Cp when
leaving C. This is impossible as component paths are acyclic.

Algorithm 7.13.
Construct queue Q by performing a postorder traversal of the component tree, skipping the
articulation points.
Set U to be the set of all demands.
while Q is not empty do

1. Let C be the head of the queue.
Construct an empty map L : Demand 7! Demand.
If all the demands in D(C) are local then skip to 5.

2. Otherwise, by Invariant 7.11, there must be a parent articulation point AP .
3. for each non-local demand d, with ingress ni and egress ne

Either C is an ingress component or an egress component for d due to Lemma 7.12.
If it is an ingress component then create a new local demand dl from ni to AP ;
otherwise create dl from AP to ne.
L L� (d! dl).

4. U (U � domL) [ranL
5. At this point all the demands in U \ C(C) are local, and so we can compute a set of paths

for each of these. If C is a component tree then the solution is purely deterministic. In
the more general case we have to solve an optimization problem. We want to minimize
the routing cost of the local carrier demands, i.e. the demands in ranL, to give the
corresponding continuation demands the maximum routing freedom. We assume a path-
based optimization strategy is being used and start by assigning the shortest weight path
(or paths) to the local carrier demands, and a more complete set of paths to the remaining
demands. We then try to solve this network problem; the exact strategy is not too
important from a global perspective. If no solution can be found, i.e. we can’t satisfy all
these demands, then we may need to widen the set of paths for the carrier demands and
try again. Set Carrier

�
d
�

to the set of paths assigned to d by the optimization process
for all local demands d. If the optimization strategy allows multiple paths to be assigned
to a demand we limit this flexibility to the non-carrier demands. I.e. we assume that if

Agilent Technical Report, No. AGL-2004-5, May 2004. Agilent Restricted

Hierarchical Demands · 21

d 2 ranL then |Carrier
�
d
�
|  1. If a demand cannot be satisfied, for example because

the QoS metric is too restrictive, then the carrier will be the empty set.
6. for each pair (d, dl) 2 L

C may be the ingress or egress component for d. The cases are symmetrical
so we just consider the ingress case. Create a new demand dr, starting at AP ,
with the same properties as d, except that the QoS constraint is reduced by
the weight of the path allocated to dl.
Carrier

�
d
�
 (dl, dr).

if dr is a singleton demand
Carrier

�
dr

�
 {✏}

else

U U [{dr}
7. U U � C(C)

Q tail Q

Lemma 7.14. Algorithm 7.13 preserves Invariant 7.11.

Proof: In the initial state the component at the head of Q is by definition a leaf in the component tree,
and so has no child components. The invariant therefore trivially holds in the initial state.

The postorder traversal of the component tree guarantees a component reaches the front of the queue
only after all its children have been processed. To ensure the invariant holds each time the queue is
popped we merely have to check that all the demands in C(C) are removed from D before C is removed
from the queue. This is guaranteed by Step 7.

Lemma 7.15. Algorithm 7.13 preserves the following relationship between U and Q after each loop
iteration:

8d 2 U · 8C 2 component path of d · C 2 Q

Proof: The relationship holds initially as Q contains all the components. The algorithm adds demands
to U at step 4. But these are all local to C, and all local demands get removed from U at the end of
each iteration in step 7. However, demands also get added in step 6. But each demand dr added in this
step will have the same component path as an existing demand, d, except that it won’t include C. At
the start of the loop we know that all the components in the path for d are in Q. So at the end of the
loop we can remove C from Q whilst satisfying the invariant for dr.

Definition 7.16. A demand d is placed if either

a) Carrier
�
d
�
2 F(Path), or

b) Carrier
�
d
�

= (dl, dr) for some placed demands dl and dr.

Lemma 7.17. On completion of the algorithm if Carrier
�
d
�

= (dl, dr), for some d, dl and dr, then
Carrier

�
dl

�
2 F(Path) and |Carrier

�
dl

�
|  1.

Theorem 7.18. After running Algorithm 7.13 every demand d is placed.

Proof: Step 5 guarantees that each local demand will be assigned a set of paths. Step 6 guarantees that
each non-local demand will have the carrier set to a pair of demands (dl, dr). The demand dl will be
satisfied by Step 5, as it is a local demand. Lemma 7.15 guarantees that the demand dr only involves
components still in Q, and so will be placed when these components are processed.

7.2 Singleton demands

The algorithm may create singleton demands as part of the lifting process. This is illustrated in Figure 20.
In the left-hand tree we push the demand from AP

1

to AP
2

up to a demand from AP
3

to AP
4

. This
demand will be local to C, and so will be routed when C is optimized. If we try the same thing in
the second example then we create a replacement demand from AP

3

to AP
3

. Step 6 in the algorithm
assigns an empty path to such demands. When the paths are concatenated to determine the routes for
the original demands such paths will disappear.

Agilent Restricted Agilent Technical Report, No. AGL-2004-5, May 2004.

22 · Kevin Mitchell

C1 C2

C

AP1

AP3 AP4

AP2

C1 C2

C

AP1

AP3

AP2
d d

Fig. 20. Singleton demands

7.3 Constructing the paths

The following lemma shows the carriers form a chain of finite length.

Lemma 7.19. If Carrier
�
d
�

= (dl, dr) then |component path for d | > |component path for dr |

The chain terminates when we reach a demand dr where Carrier
�
dr

�
2 F(Path). Let � be a binary

operator that concatenates paths, reordering them if necessary. For example, if paths were represented
by a sequence of nodes then we would define � as follows.

Definition 7.20. Let p
1

be the path hn
11

, n
12

, . . . , n
1ii, i >= 0, and p

2

be the path hn
21

, n
22

, . . . , n
2ji,

j >= 0. Then

p
1

� p
2

=

8
>>>>>><

>>>>>>:

p
1

if j = 0
p
2

if i = 0
hn

11

, n
12

, . . . , n
1i, n22

, . . . , n
2ji if n

1i = n
21

^ n
2j 6= n

11

hn
21

, n
22

, . . . , n
2j , n12

, . . . , n
1ii if n

2j = n
11

^ n
1i 6= n

21

undefined otherwise.

A similar definition could be written for the case where paths were represented by a sequence of edges.
We can now expand the carriers into explicit paths using the following definition, which is well-defined
as a consequence of the previous lemma.

Definition 7.21. Let

P(d) =

(
Carrier

�
d
�

if Carrier
�
d
�
2 F(Path);

{p | 9p0 2 P(dr), pl 2 Carrier
�
dl

�
· p = pl � p0} if Carrier

�
d
�

= (dl, dr)

The set P(d) may be empty if the algorithm has been unable to place the demand. This would typically
be caused by the QoS metric for the demand being too restrictive, or the network overutilized. We would
like to prove that if the algorithm fails to place one or more demands then all other algorithms would
also fail. However, this is not true. To see why, consider the case of a heavily utilized access component
C, with two non-local demands d

1

and d
2

. These will be split into the carriers (d
1l, d1r) and (d

2l, d2r). It
may not be possible to assign the shortest routes to both d

1l and d
2l, so one of them will end up getting

preferential treatment. This, in turn, will e↵ect the QoS constraints assigned to d
1r and d

2r. At the time
these decisions are made we don’t know how di�cult it will be to route d

1r and d
2r across the remainder

of the network. So one choice may result in both demands being routed, whereas the other choice may
result in one failing to be placed. This is the nature of such heuristics. By splitting the problem into a
number of smaller optimization steps, we lose optimality. However, by giving preference to demands such

Agilent Technical Report, No. AGL-2004-5, May 2004. Agilent Restricted

Hierarchical Demands · 23

as dl1 and dl2 during the local optimization steps we hope to minimize the problem, particularly where
networks are not heavily overutilized.

7.4 Parallelism

Our description of the optimization process is more sequential than it needs to be. Instead of a queue,
we could just allow a component to be processed once all its descendents in the component tree have
been processed. Relaxing the ordering introduces the possibility that the carrier may already be set
when the algorithm reaches Step 6. Consider the situation illustrated by Figure 21. Moreover, suppose
we are processing component C

1

. We replace demand d by a local demand dl from I to AP
1

and then
optimize C

1

. At the end of the optimization process we construct a demand dr, which originates at AP
1

and terminates at E. We must then set Carrier
�
d
�

= (dl, dr). But if a separate thread or process has
been processing C

2

in parallel, we may find that Carrier
�
d
�

has already been set to (d0
l, d

0
r), for some

demand d0
r from I to AP

2

, and d0
l from AP

2

to E. In this case, our new demand, dr should be from AP
1

to AP
2

, and we would set Carrier
�
d0

r

�
to be (dl, dr). Of course, we may find that Carrier

�
d0

r

�
has also

been set. Therefore, the algorithm must follow the chain of carriers until it reaches a demand du with
an undefined carrier. This demand is locked to prevent any other thread updating it. The appropriate
demand, dr would be constructed and the carrier for du updated. The demand would then be unlocked,
allowing other threads to extend the chain if blocked.

C1 C2

AP1 AP2

I Ed

Fig. 21. Updating carriers

7.5 Tunneling

The function P(d) converts the carriers into an explicit set of paths for each demand. We can convert each
of these into an LSP to support d. Consider the common situation where the lowest common ancestor
component of the ingress and egress of d is the core component. Let the core ingress articulation point
for d be APi and the egress point be APe. There may be many access demands that cross the core from
APi to APe with the same tra�c class. It may make more sense to aggregate the bandwidth for these
demands and construct a single LSP from APi to APe. We can then use this as a tunnel for demands
such as d. This reduces the LSP state that must be maintained by the routers in the core.

We could go further, using the carriers to suggest further scope for tunneling. However, the structure
they expose is really an artifact of the lifting process. For example, in the case of parallel execution,
the exact sequence of carriers will depend on the relative speed of the threads or processes. They are
therefore unlikely to generate an e�cient set of tunnels.

The component hierarchy could be used to suggest further potential tunnels. For example, suppose
we processed all components in reverse breadth-first order. All components at the same depth in the
tree would be processed before any components higher in the tree. The carrier chains would then be
more constrained, allowing us to build tunnels that spanned components of equal depth. If the LSPs
are constructed after the algorithm has run, rather than incrementally, then the demands in the carrier
chains could be rearranged to achieve a similar e↵ect without altering the traversal order. However, it’s
not clear that the hierarchy we identify via biconnectivity has su�cient semantic importance that even
this would yield a good set of tunnels. A more satisfactory solution may require exploiting attributes of

Agilent Restricted Agilent Technical Report, No. AGL-2004-5, May 2004.

24 · Kevin Mitchell

the network itself, such as organizational boundaries, to suggest ways of grouping the carrier demands to
best exploit the potential for tunnels.

Ideally, we would like to aggregate demands with common properties as we proceed up the component
tree. The order in which we process components may also a↵ect the potential for such aggregation.
We conjecture that traversal orders that attempt to optimize tunnel production may also increase the
likelihood of demand aggregation.

8. COMPLEX ACCESS GRAPHS

Consider the scenario illustrated in Figure 22. An access component and the core component are merged

Core

Access

a b c

d e

Split

Fig. 22. Splitting a component

into one large component due to the rich connectivity between them. We would like to split these
components, either to reduce the size of the optimization task, or to enforce administrative boundaries.
In our approach components are separated by articulation points. To separate these two components we
would need to chop the real links between them and introduce a new virtual node to play the role of
the articulation point. Figure 23 illustrates this process. Whilst case a) appears simpler, it is not clear
what link metrics should be assigned to the new edges. In case b) we use the same link metrics as in the
original graph. For example, the edge bd will have the same cost/weight as the edge from b to d in the
original graph. At first glance, it appears we will count the weights twice as we traverse to/from the core
via AP. However, our optimization process will take care of this duplication.

Having split the component in two, we can use the technique of Section 6.2 to root the component
tree, and hence identify one of these components as a grandparent of the other. We optimize the access
component as before, treating the virtual articulation point just like any other articulation point connected
to this component. However, when we reach the stage where the external demands must be lifted to the
component above we need to treat these virtual nodes specially. To see why, consider the situation where
an external demand d has been partially replaced by a local demand dl terminating at AP. Suppose this
demand has been satisfied by a path that reaches AP via the link db. When constucting the continuation
demand for dl we should not start it at AP, as our solution has already committed us to entering the
core at node b. The continuation demand should therefore be created with b as the ingress. Demands
terminating in this access component would be treated in a similar fashion. Using this approach we see
that the links from AP to the core are redundant. When we decompose two components we will not
necessarily know which component will be end up as parent, and which as child, and therefore in which

Agilent Technical Report, No. AGL-2004-5, May 2004. Agilent Restricted

Hierarchical Demands · 25

Core

Access

a b c

d e

AP

Core

Access

a b c

d e

AP

da
db
dc

ad bd be cd ce

eb
ec

a) Without weights b) With weights

Fig. 23. A virtual articulation point

order the components will be processed by the optimizer. By including both sets of links initially, the
approach will work irrespective of which order is eventually chosen.

This strategy has the advantage of simplifying the interface between the core and the access components.
The access optimization phase is responsible for choosing how access demands reach the core, i.e. which
core router they should use. It simplifies the interface between the components, which may be an
important issue where they are managed by di↵erent organizations. However, it is worth noting that this
is not the only approach we could adopt. For example, suppose the links from the access component to
AP had zero cost, and there was a single link from d to AP, and from e to AP. Optimizing the access
component would now only commit us to the exit points for each external demand, e.g. node d or e.
The continuation demand across the core would then have either d or e as the ingress point. Whilst this
gives the core optimizer more freedom, allowing it to choose where a demand should enter the core in
some cases, it complicates the process. For example, we would have to (temporarily) view d and e as core
routers, or articulation points, for the duration of the core optimization. This may be impossible when
organizational boundaries and procedures are involved.

Even with this additional freedom, the decisions are still asymmetric. For example, if the access
component has routed a demand via node e then this prevents such a demand reaching the core via node
a. A global optimizer might find a better solution by routing the demand to d, and thence to a. We may
also find there is insu�cient link capacity to cross from the access to the core with the exit points we are
committed to. This is the price we pay for decomposing the problem. In some cases, we should optimize
the access graph and let the solution constrain the core problem. In other cases it may be better, albeit
more complex, to optimize the core and hope we can extend the solution to one across the core.

Figure 22 illustrated the situation where we started with a single component. Of course, in practice,
our starting point is likely to be more complex than this, with other articulation points already connected
to the component. Figure 24 contains an existing articulation point that has links to routers in both the
new core and access components. Introducing the new virtual node does not split the components in this
case as they are still biconnected. The transformation only works when the existing articulation points
impinging on the original component have links that do not act as bridges between the new components.
Whilst this is frequently the case, it will not always be so. Further heuristics need to be developed for
these cases, leading us even further from any pretence at optimality. For example, we may need to resort

Agilent Restricted Agilent Technical Report, No. AGL-2004-5, May 2004.

26 · Kevin Mitchell

Core

Access

AP?

Original
AP

Fig. 24. An invalid split

to marking links as being “backup” connections, ignoring them for placement purposes, and simplifying
the connectivity.

9. ADMINISTRATIVE PARTITIONS

Many network operators split the management of the network across multiple organizational boundaries.
It is important to align our components with this organization so we don’t attempt to optimize a collection
of routers under the control of multiple groups. Note that this does not imply we want to construct only as
many components as there are organizational entities. Nevertheless, we must ensure that no components
are split across such entities. Section 6.1 discussed component merging, and Section 8 discussed splitting.
Given a predefined grouping of routers there will be a need to automate the merging and splitting of
components identified by the biconnected component analysis so our components respect this grouping.
Our description of the algorithm in Section 7.1 attempted to place all the demands. However, when the
network is partitioned along administrative boundaries we have to refine this approach. For example,
suppose you were managing the access network. You would run the algorithm until the demands were
lifted to the core component(s). The resulting demands would be presented to the core team as a set of
requirements. These would eventually be satisfied by a set of LSPs, which would then be fed back into
the access optimizer. This component could then complete the provisioning of the access LSPs. In some
scenarios, such as the VoIP gateway case, it may be acceptable for these core demand requirements to be
satisfied by a collection of LSPs, to spread the load. A mechanism for specifying such flexibility would
need to be developed.

10. CONCLUSIONS

In this document we have discussed various algorithms to decompose network topologies in a way that
simplifies the optimization of demand placement. Access trees are simple to identify, and in some cases
may be su�cient to yield a tractable problem. An approach based on the identification of biconnected
components was developed for those examples where the access elements of the network are more complex
in structure. The optimization process is more involved in this case, but allows a far richer collection of
networks to be tackled. To align the components with administrative boundaries, and to split individual
components that are still too large to optimize as a whole, we introduced virtual articulation points. Of
course there will still be some networks where none of these techniques will be su�cient, requiring the
introduction of further heuristics to assist in their decomposition. Access to real network topologies is
often di�cult, with operators frequently treating such information as being sensitive. At this stage it
is therefore di�cult to assess the extent to which these techniques will be su�cient, and what, if any,

Agilent Technical Report, No. AGL-2004-5, May 2004. Agilent Restricted

Hierarchical Demands · 27

additional techniques will be required. Only by implementing these techniques, and then deploying them
widely, will we be truly able to assess their utility.

One important aspect of MPLS network optimization is the need for path protection. Constraining
a demand to an explicit path may make e�cient use of the network resources. But if one of the links
or routers along this path fails then we need to be adaptable, preferably without just falling back to
best-e↵ort routing. Many approaches have been proposed to tackle this problem, e.g. [Bejerano et al.
2003]. Our optimization strategy is based upon exploiting bottleneck nodes, either naturally occurring in
the network, or artificially created to help the decomposition process. There is an obvious conflict here,
as bottlenecks are undesirable from a path-protection standpoint. We may need to group multiple nodes
and links into virtual nodes, allowing redundancy at the physical level whilst looking like a single object
to the optimizer. It would also be interesting to investigate whether the hierarchical structure produced
by our technique could be used to simplify the path restoration problem as well.

REFERENCES

Bejerano, Y., Breitbart, Y., Orda, A., Rastogi, R., and Sprintson, A. 2003. Algorithms for computing QoS paths with
restoration. In INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE Computer and Communications
Societies. Vol. 2. IEEE, 1435 – 1445.

Cisco. 2003. Autobandwidth allocator for MPLS tra�c engineering:. White paper.

CPlane. 2003. Tra�c optimizer product overview. White paper.

Köhler, S. and Binzenhöfer, A. 2003. MPLS tra�c engineering in OSPF networks - a combined approach. Tech. Rep.
304, Institute of Computer Science, University of Würzburg. February.

Liu, G. and Ramakrishnan, K. G. 2001. A*prune: An algorithm for finding k shortest paths subject to multiple constraints.
In INFOCOM. 743–749.

Mitchell, K. 2004. The TOAD optimizer. Tech. rep., Agilent Labs. In preparation.

RAD. 2004. RAD introduces TDMoIP PMC for OEM developers. http://www.rad.com/Article/0,6583,18087,00.html.

Sedgewick, R. 2001. Algorithms in C++ Part 5: Graph Algorithms. Addison-Wesley.

Wandl. 2002. IP/MPLSView: Integrated network planning, configuration management & performance management. White
paper.

Agilent Restricted Agilent Technical Report, No. AGL-2004-5, May 2004.

