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The TOAD is a prototype of an o✏ine tra�c-engineering system for MPLS being developed within Agilent Labs. It supports
demand splitting, with multiple ingresses and egresses. Both edge- and path- based optimization technqiques are supported,
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describes some of the assumptions underpinning the TOAD and a brief overview of its features. The report concludes with
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1. INTRODUCTION

The TOAD, a Tra�c Optimizer for Aggregated Demands, is a research prototype, developed within Agilent
Labs, to explore some of the issues involved in the o✏ine optimization of MPLS tunnels. This paper
describes the design of the TOAD, the assumptions underpinning this design, and some preliminary results
that have been obtained from the prototype. MPLS[Rosen et al. 2001] fuses the intelligence of routing with
the performance of switching, and has rapidly become a key technology for provisioning and managing core
networks. We assume the reader is already familiar with label switching technology in general, and MPLS
in particular. For those readers requiring a refresher, the book by Davie and Rekhter[Davie and Rekhter
2000] provides a concise overview of the label switching approach. Tra�c Engineering (TE) is the process of
selecting the paths chosen by data tra�c in order to facilitate e�cient and reliable network operations, while
simultaneously optimizing network resource utilization and tra�c performance. In the context of MPLS,
tra�c engineering involves assigning tra�c trunks to label switched paths (LSPs), and the routing of these
paths. Quoting Eric Dean from Global One, “MPLS and Tra�c Engineering allows for one to spread the
tra�c and distribute it across the entire network infrastructure like magnetic fields between poles, while
also providing the redundancy required for high availability service”.

Historically, connectionless data networks have not had to o↵er high Quality of Service (QoS) guarantees;
nor have they needed to support services that require assurances of bandwidth availability. Real-time
services, such as voice and video, impose throughput and delay constraints on a network. QoS can be
provided on top of an existing network by means of over-provisioning, increasing capacity to ensure that
congestion never occurs. MPLS TE allows us to assign tra�c from di↵erent classes to distinct paths,
providing a mechanism to distinguish between these classes, and meet QoS requirements, without needing
excessive overprovisioning.

Establishing a label switched path is a relatively expensive operation, both in terms of the signaling tra�c
required to establish and maintain the path, and the state that needs to be held in all the routers along this
path. This suggests that LSPs will not usually be constructed for individual microflows. A more plausible
usage model establishes a set of relatively long-lived LSPs, where long in this context may be hours or days.
Individual microflows are then tunneled over the most appropriate LSP. Where do the requirements for LSP
creation come from in this model? In a VPN setting we might deploy a new set of LSPs as part of the
commissioning process for a new corporate customer. In other cases, we might construct tra�c matrices
between edge routers, and use these to suggest the need for new LSPs. In the context of VoIP, the primary
target of the TOAD prototype, the tra�c matrices can be constructed by analysing the signaling tra�c
from the voice gateways[Pollock 2004].
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The core component of any MPLS system is the label switched path (LSP). This establishes a route across
the network, from an ingress to an egress, via a sequence of label switching routers (LSRs). Filters at the
ingress control which flows are routed to each LSP. The route taken by an LSP is not constrained to be
the same as that followed by best-e↵ort, IGP shortest-hop packets, allowing tra�c to be routed away from
bottle-necks. There are a number of di↵erent mechanisms that can be used to establish these LSPs. The
most primitive approach establishes an LSP piece-wise, by configuring label bindings on each of the LSRs
along the route. Whilst satisfactory for establishing long-lived LSPs, particularly those whose routes have
been determined mechanically, the static approach is not very flexible. This has led to the development
of constraint-based routing (CBR) mechanisms. These make use of path establishment protocols, such
as RSVP-TE[Awduche et al. 2001] and CR-LDP[Aboul-Magd et al. 2001], to set up paths with reserved
bandwidth from ingress to egress.

The input to the CBR process may, at one extreme, just specify the two endpoints of the tunnel, along
with a (possibly empty) set of QoS constraints that define the acceptability of any path chosen by CBR. At
the other extreme, the constraints may include the exact path to be followed by this LSP, with the CBR
step merely being used to reserve resources along this path. Strict routing allows us to control the precise
route taken by an LSP, but at the expense of making the solution vulnerable to failures. To address this
issue, MPLS allows multiple paths to be specified, with the primary path being used initially, and secondary
paths used to support the tunnel in the case of failures. In many cases, it may be preferable to use loose
routing, where the path to be followed is only partially specified, allowing CBR to construct solutions that
can adapt to changing network conditions.

The CBR approach, at least in its simplest form, uses a “greedy” algorithm. It may route an LSP in a
way that blocks future requests where another alternative could have prevented this, or where it may have
been better to reject this request for the greater good. For example, consider a set of tunnel requests, or
demands, d

1

, d
2

, . . . . If we route these demands sequentially then we may find the path used for d
1

prevents
d
2

from being placed at all, or it may have to be routed via a suboptimal path. In some cases, there may
be an alternative route for d

1

that still satisfies the QoS constraints, but also allows a more optimal routing
for d

2

. Another disadvantage of CBR is that it typically has to select a path under tight time constraints.
Of course this doesn’t always have to be the case. When provisioning a new VPN we may need to request
the provisioning of multiple LSPs simultaneously, and it may be acceptable to take a few minutes to satisfy
this request. But in other cases the request for an LSP may be to satisfy a resource-intensive application,
where a response may be required in a small number of seconds. Unfortunately, we are not aware of any
mechanism for providing such “timeliness” constraints, or indeed for batching requests.

In some cases, it may be preferable to delegate the routing decisions to a separate route server, for example
[Cech 2002]. The Common Open Policy Service (COPS) protocol is a simple query and response protocol
that can be used to exchange policy information between a policy server (Policy Decision Point or PDP)
and its clients (Policy Enforcement Points or PEPs)[Durham et al. 2000]. In this context COPS can be used
as the interface between the router and the route server. An obvious advantage of using a route server is
the flexibility it o↵ers. You can change the placement algorithms without altering the routers, and the route
server may be able to precompute potential solutions in the idle moments between requests. The server
could also compute a backup path after the main LSP has been placed, allowing a faster initial response,
although this strategy runs the risk of the primary path failing before the backup path has been configured.
The server does not have to wait for OSPF-TE to propagate residual bandwidth changes, and so may be
more responsive to such changes. Of course it introduces its own set of problems, such as a single point of
failure, and the time taken to/from the server. Distributing the server, either by simple replication, or by
IGP area for example, may solve these problems, but at the expense of additional complexity. At present
we are not aware of any commercially available solutions based around route servers.

In some situations we may be able to predict the demands between a set of endpoints, allowing o✏ine
optimization of their routes. This might be because the tra�c is fairly predictable, for example VoIP tra�c
between sites. Or it might be because some kinds of tra�c in the core are su�ciently aggregated that we
can view them as consisting of a steady flow with bursts superimposed on top. Other examples may be
predictable due to contractual agreements, such as the provisioning of virtual private networks (VPNs). In
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these cases, it may be more e�cient to calculate the best routes for a collection of LSPs simultaneously,
o✏ine.

The o✏ine approach has two main advantages when compared to constraint-based routing. It can place
multiple LSPs simultaneously, and so their paths can be chosen to globally minimize the load on the links, for
example. Furthermore, because it does not have to run in real-time, it can use more sophisticated optimiza-
tion algorithms. There are a number of well-established and full-featured applications that perform o✏ine
optimization of LSP routes. WANDL’s IP/MPLSView[Wandl 2002], CPlane’s Tra�c Optimizer[CPlane
2003], and OPNET’s SP Guru[OPNET 2003] are probably the most successful examples of such tools. In
addition to determining the primary path for each LSP, such tools frequently support the optimized routing
of backup paths, and link and node protection paths. O✏ine optimization and capacity planning tools
are also useful for “what-if” analysis, allowing the operator to explore the ramifications of di↵erent load
predictions on the network, or the consequences of various kinds of failure.

An obvious disadvantage of the o✏ine approach is the requirement to identify and predict relatively stable
demands in a network that are suitable for optimization. In addition to determining suitable ingress and
egress points, and tra�c class, we must also construct reasonably accurate bandwidth predictions for these
demands. The optimality of the o✏ine approach, when compared to an online strategy, is di�cult to quan-
tify, partly because the information available to the routing process varies between CBR implementations.
For example, when using a centralized route server the process has global knowledge of what is currently
provisioned, and may also have some knowledge of the current loads on individual routers. As this load
depends on best-e↵ort tra�c demands, a factor not visible to the o✏ine process, in some cases the CBR
approach may have more information at its disposal than the o✏ine approach.

From the previous discussion it is clear that each approach has its advantages and disadvantages. Hybrid
solutions attempt to combine the best of both approaches. We can distinguish three main forms of hybrid;
spatial, temporal, and CBR approaches guided by o✏ine pre-computation.

Perhaps the simplest approach is to exploit the access/core distinction that is common in many networks;
we call this the spatial approach. We provision a relatively static set of LSPs across the core of the network,
and use these to tunnel the more ephemeral LSPs created by the access layer. O✏ine tools can then be
used to engineer the core LSPs, and constraint-based routing to provision the access-level LSPs. The core
network will typically be overprovisioned, with plenty of space capacity remaining to support best-e↵ort
tra�c for example. We can therefore allow some changes to the core configuration, such as modest changes
to reserved bandwidth, without needing to reengineer the core. Given the highly aggregated nature of the
flows, we may only need to rerun the o✏ine tool once every few days. Furthermore, the need to provision
a new LSP across the core, between runs of the o✏ine optimizer, may be a su�ciently rare occurrence that
routing it using CBR may be adequate until the next run of the tool. At the access level, the LSPs may be
so ephemeral that it becomes pointless placing them using an o✏ine tool. Furthermore, in many cases the
routing process may be fairly trivial, as most of the path will consist of a tunnel through the core. In these
cases, we merely have to decide on the best tunnel to use, rather than worrying about the individual hops.
If our network, and LSP usage patterns, fit into this model then this may be the simplest way of marrying
together the o✏ine and online approaches. Using such a technique is predominently a procedural issue; the
hybrid introduces no new technical issues that aren’t already present in the individual o✏ine and online
components.

The temporal approach does not make core/access distinctions. Instead, it optimizes those demands it
currently knows about simultaneously, o✏ine, and then routes subsequent demands online, using constraint-
based routing. Obviously if most of the demandss can be predicted, and routed statically, then such a hybrid
will behave similarly to a purely o✏ine tool. If most demands arrive between runs of the o✏ine tool then
the system will behave more like a CBR system. But the nature of the requests also a↵ects how such a
hybrid performs. A new high-priority request may not be able to be fulfilled without preempting existing
lower-priority LSPs. The preempted LSPs will then need to find an alternative route to the egress, or fail.
If a preempted LSP has been provisioned as part of the o✏ine process then it may be strictly routed all the
way to the egress. This can make it di�cult to reroute it when prempted. It may have a backup tunnel,
but this is designed to be used in the case of link or node failure. Preemption may not be considered by
Agilent Restricted Agilent Technical Report, No. AGL-2004-13, August 2004.
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some o✏ine tool if they do not consider the possibility of future CBR LSP requests. Some approaches, e.g.
[Iovanna et al. 2003], avoid such complexities by only provisioning the highest priority LSPs in the o✏ine
phase.

The pre-computation approach uses online constraint-based routing to provision every LSP. But it attempts
to compute o✏ine information that can be used to speed up, or improve this process. Examples of this
approach include [Orda and Sprintson 2000], [Cui et al. 2003] and [Suri et al. 2001]. Approaches based on
pre-computation attempt to either speed up the routing process, or to exploit information not necessarily
available to individual routers, such as tra�c profile details.

2. LIMITATIONS OF EXISTING APPROACHES

Inputs to o✏ine tools typically consist of requests to provision a set of LSPs with particular characteristics.
Where do these LSP demands come from? In some cases, they can be generated from tra�c matrices.
Consider a demand for 50 Mb/s of IP tra�c between an ingress and egress point. Such a demand might
consist of a single flow, for example as part of a high-performance grid computing environment. But in other
situations, such as VoIP, the demand might be generated by the aggregation of a large number of relatively
small flows. O✏ine optimizers usually map a demand to a single LSP, to avoid introducing undesirable packet
reordering. Whilst such a restriction makes sense in the context of the single large microflow example, it
is less clear it is necessary in the VoIP case. Although each of the individual microflows should follow a
single path, and therefore be assigned to just one LSP, if two calls were assigned to di↵erent LSPs then no
harm would occur. Furthermore, we may be able to make better use of the network by provisioning multiple
smaller LSPs than one large one.

This analysis suggests that we might be better o↵ provisioning ten 5 Mb/s LSPs between the ingress and
egress, rather than a single 50 Mb/s LSP. Of course we have a trade-o↵ here. A large number of LSPs, each
with a smaller bandwidth request, may be easier to route, easier to protect, and make better usage of the
overall network resources. But there will also be more signaling overhead. What is the best way of splitting
an LSP to optimize network utilization, and how can we distribute the microflows to the resulting LSPs in
an e�cient fashion? Rather than splitting the demand prior to the optimization stage, it may be preferable
to express initial demands in terms of bandwidth, and characteristics of the aggregated tra�c making up
this demand. We then let the system determine which LSPs to provision to make up this demand, and the
mechanism necessary to map microflows to the appropriate LSP.

The previous discussion has considered the scenario where a large demand is best split into multiple
smaller demands. But the opposite problem may also occur, particularly in the context of VPNs. In a
VPN environment you may assign tra�c to di↵erent LSPs, to keep them logically separate, even though
they follow the same route across an MPLS cloud. Moreover, if every small customer is assigned their own
VPN then many of these LSPs will have small bandwidth requirements. The obvious strategy here may be
to tunnel these LSPs across another LSP. But tunneling all LSPs that share a common route, and similar
tra�c class, over a single LSP may yield a very large LSP. For the same reasons as discussed earlier, it may
be preferable to tunnel them over more than one LSP. And if so, what is the best tunnel size for a particular
topology? These issues are frequently neglected by o✏ine tools.

Each LSP has a fixed egress point. Backup paths are also constrained to have the same egress as the path
they are protecting. In some cases, this is a natural restriction. For example, an LSP might be constructed
between two sites belonging to the same customer. In such a case there will be a unique ingress and a
unique egress. But consider the example where an LSP is provisioned across an MPLS cloud to a border
gateway router, providing access to a portion of the external Internet. There may be many such routers
that could provide this forwarding service. However, the IGP will typically just select one of them at any
particular point in time. Constructing an LSP, and secondary path, to this single egress may be restrictive
in a number of ways. If the gateway fails then the LSP itself will also break. If there are other gateways
that could forward this tra�c it may be desirable to establish a backup path with a di↵erent egress point.
Furthermore, even without failures, we may reach a situation where the egress point becomes overloaded,
or where links become saturated because of the load imposed by the LSP. In such cases, we may find that
other egress points, that could potentially carry some of this load, are underutilized. This suggests that it
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may be attractive to allow demands with sets of egresses in their specification, as long as we can ensure that
each microflow contained within such a demand only uses one of these egresses. Such an idea is not entirely
new. The work on NetScope[Feldmann et al. 1999; Feldmann et al. 2000] applied similar arguments to the
construction of tra�c matrices, but it’s ramifications in the context of MPLS have not been explored as far
as we are aware.

There is some evidence to suggest that routing instability, due to link and router failure, may have a sig-
nificant impact on VoIP quality.[Boutremans et al. ] The preprovisioning of secondary routes, fast rerouting,
and other path protection mechanisms, are one of the main advantages of using MPLS for supporting VoIP
services. But constraining such paths to always have the same egress point may result in single points of
failure, and/or secondary paths taking very non-optimal routes. This further motivates the study of more
flexible LSP specifications.

2.1 The LSP assignment problem

One of the main di�culties with mapping demands to multiple LSPs is the need to construct filters at the
ingress router. These are required to map microflows associated with the demand into the LSPs supporting
the demand, in the correct proportions dictated by the bandwidth reservations for these LSPs, and without
splitting the individual flows. A demand may also be built from a set of LSPs constructed to support one or
more VPNs. Let’s call these “VPN LSPs” to distinguish them from the “TE LSPs” established to support a
demand. A collection of VPN LSPs may be tunneled across a TE LSP, and so filters must also be constructed
to perform this association in the correct proportions. We call the mapping of microflows and VPN LSPs to
a set of TE LSPs the LSP assignment problem. If a demand is made up of many di↵erent sizes of microflow,
and these are connectionless in nature, then there may be no good mechanism for splitting such a demand
without splitting individual microflows. This should be avoided where possible as it increases the risk of
packet reordering.

If the tra�c making up the demand has any obvious substructure then this could be exploited to partition
the tra�c into two or more subclasses, and each of these could be mapped to a separate LSP and then routed
by a tool like WANDL. In this case individual tra�c demands drive the construction of the LSPs, and the
e↵ect this decision has on overall network utilization is only considered as an afterthought. In contrast,
we propose driving the decomposition process from the global optimization of demands. The challenge in
this case is to e�ciently map microflows to the resulting set of LSPs. So what kinds of demand might be
amenable to such splitting?

In our first scenario consider the case where the demand consists of a large number of connection-oriented
microflows, each requiring a similar bandwidth reservation. VoIP streams are a good example of what we
have in mind here. At one level it should be fairly easy to map calls to LSPs. It’s clear when the flow starts,
and the size of the flow is bounded. But the ingress point for the LSP may not be aware of such details,
and establishing a separate filter for each call may overload an edge router. As MPLS technology moves
towards the access network this becomes less of an issue, as voice gateways and MPLS edge routers become
colocated.

In the second scenario consider the case where VPNs are deployed extensively, with many customers
being assigned their own VPN LSPs. In such a situation there may be many VPN LSPs with similar
QoS requirements traversing paths between a particular ingress and egress. A single TE LSP between the
ingress and egress could be established, with a bandwidth reservation equal to the sum of the individual
reservations. The original LSPs could then use this LSP as a tunnel. This would potentially reduce the
signaling overhead, and conserve label space through the core. But the resulting LSP may require a large
bandwidth reservation. If we view this as our demand then there are clearly many other ways of aggregating
and tunneling the individual VPN LSPs into/across the TE LSPs constructed for this purpose. We could
run a multi-commodity flow (MCF) algorithm to determine a globally optimum number of TE LSPs, and
their bandwidth requirements, and then construct an embedding from the VPN LSPs to the TE LSPs. In
this scenario it should be relatively simple to create filters to tunnel the VPN LSPs into the appropriate
TE LSPs. There will be far fewer of them than individual microflows. Moreover we just need to map a
label/ingress interface into the appropriate “label-push” action. In this, and the other scenarios, we assume
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that there will be some flexibility in how we choose the bandwidth of the TE LSPs. We may run a MCF
algorithm to get an idea of how many LSPs we should construct, and their bandwidth requirements. But we
may then adjust these figures by a small amount to make it easier to host the required flows/VPN LSPs. We
assume that small changes will not move the solution too far away from the “optimum”. We also assume
that there will be excess residual capacity on most links, for example to support best-e↵ort tra�c and
subsequent CBR LSP demands, allowing us to make minor adjustments to bandwidth reservations without
saturating a link.

For the final scenario consider the situation where a router has two parallel links to a peer. Routers
will sometimes spread the load over these links using hashing to minimize packet reordering. A hash value
is computed for each packet header, and this is used to determine which of the links the packet should be
forwarded over. The hash function is designed so that each packet in a microflow will hash to the same value.
In the extreme case, where all the packets were for a single flow, then one of the links would never be used.
However, given a mix of flows, and a carefully chosen hashing function, we can spread the load fairly evenly
over the two links. A similar approach could be applied to the LSP assignment problem. Of course this
hashing process will not be perfect, and we will find that the distribution of tra�c to the individual LSPs
will not match the distribution required by their reservations. What can we do about this? Two strategies
spring to mind. First, we can dynamically modify the mapping from hash value to LSP in an attempt to
move the observed distributions in the required direction. If this fails, and an individual LSP reaches its
full capacity, we could use an approach similar to that advocated by [Wang et al. 2002] The idea would be
to start assigning excess tra�c to one of the other LSPs associated with the demand. This would obviously
increase the probability of packet reordering, but to what extent? In a heavily aggregated flow the packets
associated with an individual microflow may be spaced su�ciently far apart that they would be unlikly to
be reordered as a result of such a mechanism. This scenario would obviously require changes to edge routers,
just as techniques like RED and WRED do[Cisco 2002]. But it suggests that, at least in principle, MPLS
routers could split demands across multiple LSPs without introducing excessive packet reordering.

The current TOAD prototype focuses on the first of these scenarios, assuming the voice gateways are also
MPLS edge routers, e.g. [RAD 2004].

3. DEMANDS

In the context of this report we view a demand as a request for a guaranteed amount of bandwidth between
an ingress and an egress node, with an associated QoS requirement or constraint. Demands arise from
a variety of sources. A request to provision a high-bandwidth video link could be viewed as a demand.
Such demands arrive incrementally and, in the context of an MPLS network, would be mapped to label
switched paths using an online algorithm such as CSPF with RSVP-TE. Predictions based on an analysis of
tra�c matrices can yield another source of demands. In this case we typically generate a large collection of
demands that will exist for the duration of the prediction period. We could provision each of these demands
in turn, using CSPF. But we may be able to improve network utilization by simultaneously optimizing the
LSP routes for all these demands. One of the primary goals of the TOAD prototype is to perform such
optimizations.

3.1 Demand aggregation

There could be many demands associated with each ingress/egress pair. In a VPN setting individual
corporate customers may each generate a set of demands between these endpoints. Furthermore, a demand
has a QoS constraint attached to it, recording aspects such as the maximum hop limit, delay, a�nity groups,
and cost. So even for a single customer there may be multiple demands associated with an ingress/egress
pair, corresponding to di↵erent service classes and tra�c characteristics. The optimizer will associate one or
more paths to each demand, and each of these paths will, in turn, be hosted by a single LSP. This is clearly
worrying from a scaling viewpoint, as each LSP has a small, but non-trivial, signaling and state overhead
in each router along the path.

Allowing small demands to be split over multiple paths increases the risk that we will be unable to assign
the constituent flows to the LSPs in the correct proportions without requiring bandwidth adjustments, or
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splitting microflows. For these reasons we assume that demands are aggregated, where possible, prior to
processing by the optimizer. Demands for di↵erent customers may be merged, from the perspective of
the optimizer, if they have the same ingress, egress, and QoS constraints. But what about demands that
share the same ingress and egress, but have di↵erent tra�c classes/QoS constraints? If they only di↵er
superficially then we might choose to merge such demands, giving the combined demand the stricter of the
QoS settings. Here we are trading o↵ optimality for scalability.

The MPLS specification includes an EXP field within the shim header, allowing two flows traversing the
same LSP to be treated di↵erently at each hop if the headers have di↵erent EXP bits. This feature could
be exploited to allow demands to be merged that have very di↵erent QoS constraints, using the EXP bits
to provide the service di↵erentiation between the two demands. But a better strategy might be to keep the
demands separate in such cases. If the demands are then assigned a common path by the optimizer we could
provision a single LSP, using the EXP bits to provide the di↵erentiation. This would reduce the number
of provisioned LSPs whilst not unduly constraining the optimizer. At present, the TOAD implementation
does not exploit the EXP bits.

3.2 Multiple ingresses and egresses

An LSP has a single exit point, at the egress. But what about demands? Consider the problem of building a
tra�c matrix between VoIP gateways. These matrices would form the basis of our demands in the VoIP case.
A call arriving at an ingress gateway could potentially be forwarded to its final destination by a number of
di↵erent egress gateways. In some cases one of these would be the preferred gateway to use, whilst in other
cases two or more gateways might be equally acceptable. Discarding this valuable information when building
the tra�c matrices seems wrong[Feldmann et al. 1999; Feldmann et al. 2000]. This suggests that our tra�c
demands should also support the possibility of multiple egresses, with some indication of preference between
them[Pollock 2004]. The result of the optimization process would be a set of paths for each demand. Each
path would have a single egress as its endpoint, to enable it to be implemented by a single LSP. However,
di↵erent paths for the same demand could be allowed to have di↵erent termination points. Where one egress
is to be preferred over another then we would expect the paths to use the preferred egress. However, using
another egress might reduce network utilization on some other aspect of the optimization problem we are
also interested in. The emphasis to place on egress choice, compared to the other cost metrics, is specified
by the user when the optimization criteria is chosen.

One approach we could adopt would be to extend the notion of demand to allow a set of egresses to be
specified explicitly. In some cases we might even require multiple ingresses, for example where demands
across a large network are transformed into demands across a smaller core network[Mitchell 2004b]. One
disadvantage of such an approach is that it can be di�cult to specify egress preferences in a way that
interacts predictably with our other optimization goals. To address this issue we follow a di↵erent path
to supporting multiple endpoints. We allow virtual nodes to be added to the topology, along with virtual
links that connect these new nodes to the non-virtual ones. Consider the situation where we wish to define
a demand from ingress i to two egresses, e

1

and e
2

. We construct a new virtual node, {e
1

, e
2

}, and add
two unidirectional links, one from e

1

to {e
1

, e
2

} and the other from e
2

to the new node. This situation is
illustrated in Figure 1.

The costs associated with traversing the virtual links allow us to express preferences between using e
1

and e
2

. The costs may be completely artificial, just expressing administrative preferences between the two
gateways. Or they may be an approximation of the cost of forwarding the tra�c to the final destination
using each of these gateways. The TOAD optimizer treats virtual nodes like any other nodes. At the end
of the optimization process there will be one or more paths selected to satisfy this demand. For each such
path it will either pass through e

1

or e
2

. When provisioning the LSPs for these paths we use e
1

or e
2

as the
egress, as appropriate; the presence of {e

1

, e
2

} is not visible in the provisioned solution. We also ensure that
traversing a virtual link does not increase the hop count, as otherwise this would rule out paths that were
perfectly acceptable in the provisioned solution. Demands requiring multiple ingresses can be handled using
the same mechanism. The challenges of route optimization in the presence of multiple egresses is discussed
further in [Mitchell 2004a].
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Fig. 1. Representing multiple egresses using virtual nodes and links

The MPLS specification allows secondary or backup paths to be provisioned along with the primary path.
In the case of multiple egresses it might be natural to allow the egress of a backup path to be di↵erent to
the primary path egress. The current TOAD implementation does not address the backup path problem.

3.3 Bidirectional demands

MPLS LSPs are unidirectional. But many demands are naturally bidirectional. In some cases the bandwidth
required in the two directions may be di↵erent. In other cases, such as aggregated VoIP tra�c, both
directions can be viewed as requiring the same bandwidth. Consider a demand from I to E with a bandwidth
requirement of 100 Mbps. If this denotes a bidirectional demand then there is also an implicit demand of
100 Mbps from E to I to support this tra�c.

The situation becomes more complex when bidirectional demands with multiple egresses are required.
Consider the example in Figure 1, where the demand from i to {e

1

, e
2

} is now bidirectional, with a band-
width requirement of 100 Mbps. Converting this to a unidirectional demand, and introducing a second
unidirectional demand of 100 Mbps from {e

1

, e
2

} to i, will not always give us the solution we require, de-
pending on the nature of the demand. To see why, consider a solution where all the demand is routed via e

1

in the forward direction and via e
2

in the reverse direction. This would result in one LSP being provisioned
from i to e

1

and a second one from e
2

to i. If this demand represents an aggregated collection of VoIP calls,
with e

1

and e
2

representing voice gateways, then this is clearly an invalid solution. Each call must leave the
network via a single gateway; having the return path enter the network though a di↵erent gateway is not
allowed. This problem, and a solution, are discussed in more detail in [Mitchell 2004a].

In summary, the TOAD prototype assumes demands can be split across multiple LSPs, and also supports
demands with multiple egresses. This positions the prototype in a unique position within the TE optimiza-
tion space. Other features, such as scripting support, and a methodology for hierarchically decomposing
demands [Mitchell 2004b], add further novelty to this work. Although not currently supported, it would be
relatively easy to handle demands that should not be split, simply by adding additional constraints to the
optimization model.

3.4 Topology and Demand files

To optimize the routing of a set of demands we require access to the network topology. The demands have
bottleneck constraints such as bandwidth, and additive constraints such as maximum delay and cost. The
links in the network topology must be annotated with attributes to support these metrics. The prototype
uses an XML file, backed by an XML Schema, to describe the network topology. A simple example of such
a file is shown below.

<network
xmlns:xsi=’http://www.w3.org/2001/XMLSchema-instance’
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xsi:noNamespaceSchemaLocation=’Network.xsd’>
<node id=’0’ name=’San Diego’ AS=’-1’ type=’RT_NODE’ .../>
<node id=’1’ name=’Palo Alto’ AS=’-1’ type=’RT_NODE’ .../>
...

<edge delay=’2.5688’ bw=’155’ ...>
<node id=’0’/>
<node id=’1’/>

</edge>

<edge delay=’0.0202’ bw=’155’ ...>
<node id=’1’/>
<node id=’2’/>

</edge>
...

</network>

To produce the topology files we currently use a modified version of the IGP Detective[Lehane 2002].
A custom client registers with the agent for a period of time, building up a maximal view of the network
elements. At the end of this period it dumps out a topology file that can be loaded into the TOAD.
We use the OSPF-TE extensions[Katz et al. 2003] to find the link attributes. Unfortunately, these are
often set manually by the operators, and so cannot always be trusted. Furthermore, for large networks
spanning multiple autonomous systems we may need to stitch together multiple small topologies, using
BGP connectivity information, to provide a complete network topology. At present this step has to be
performed manually. Other alternatives exist for collecting this data, including SNMP, and Cisco’s CDP. In
a real deployment of the optimizer we may be able to retrieve topology information from the OSS system
as well.

The demand files define a set of tra�c classes, and a set of demands built using these classes. The tra�c
classes define a set of QoS constraints, currently consisting of a hop limit, maximum delay, and cost. They
also have a priority which is used to stratify the optimization task; we first attempt to optimize all the
demands whose associated tra�c classes have the highest priority, and then repeat the process with the rest
of the demands on the residual network. The demand files are written using XML, backed by a Demands
schema. An example demand file is presented below.

<demands
xmlns:xsi=’http://www.w3.org/2001/XMLSchema-instance’
xsi:noNamespaceSchemaLocation=’Demands.xsd’>

<class name=’premium-plus’ id=’0’ priority=’1’ hops=’6’ delay=’1000’ cost=’20.2’/>
<class name=’premium’ id=’1’ priority=’0’ hops=’6’ delay=’1000’ cost=’20.2’/>
<class name=’best-effort’ id=’2’ priority=’0’ hops=’4’ delay=’3000’ cost=’40’/>
<class name=’best-effort+’ id=’3’ priority=’0’ hops=’4’ delay=’3000’ cost=’40’/>

<demand tc=’1’ bw =’10’ ...>
<ingress name=’San Diego’/>
<egress name=’Palo Alto’/>

</demand>

<demand tc=’2’ bw =’5’ ...>
<ingress name=’Palo Alto’/>
<egress name=’Argonne’/>

</demand>

...
</demands>
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To support multiple ingresses and egresses, we allow additional nodes and edges to be defined within the
demand file. These will be treated as virtual nodes and edges. As such, they are constrained so that a
virtual edge can only connect a virtual node to a non-virtual node. In the following example we contruct a
virtual node to represent a choice between N1 and N2.

<demands ...>
...
<node name=’N1+N2’/>
<edge from=’N1’ to=’N1+N2’ delay=’1’ bw=’10’/>
<edge from=’N2’ to=’N1+N2’ delay=’2’ bw=’10’/>

<edge from=’N1+N2’ to=’N1’ delay=’1’ bw=’10’/>
<edge from=’N1+N2’ to=’N2’ delay=’2’ bw=’10’/>

<demand tc=’0’ bw =’10’>
<ingress name=’N0’/>
<egress name=’N1+N2’/>

</demand>

<demand tc=’0’ bw =’10’>
<ingress name=’N1+N2’/>
<egress name=’N0’/>

</demand>
</demands>

4. FLOWS

Consider the problem of optimizing the placement of a set of demands across the network. There are two
equivalent ways of representing any solution to this problem from the viewpoint of a particular demand, d.
For each arc in the graph we can record how much of the demand should flow over this edge. In an “optimal”
solution we would expect this value to be zero for most arcs. We refer to this approach as an edge-based
solution to the demands problem. But the flow decomposition theorem ([Ahuja et al. 1993]) tells us that
any collection of nonnegative arc flows can also be represented as a set of path and cycle flows, though not
necessarily uniquely. Therefore we can also describe any solution by a set of paths, cycles, and the amount of
flow traversing each of these. Given that we are typically trying to minimize a cost function such as routing
cost, or delay, we would not expect cycles in our optimal solutions, and so we can restrict our solutions to
just those containing simple paths. An alternative to the edge-based approach is to explicitly enumerate a
set of paths between ingress and egress, and then calculate how much of the demand should flow over each
of these whilst optimizing some objective function. We refer to this approach as the path-based solution to
the demands problem.

Both encodings could be used to model the problem, and there are advantages and disadvantages to each
approach. We consider each one in turn.

4.1 Edge-based modeling of demands

The obvious advantage of an edge-based encoding is that you do not need to determine, in advance, the set
of paths that are likely to be used in an optimal solution. The optimizer is free to assign the demand to
any collection of edges that connect the ingress to the egress, subject of course to some flow conservation
laws. But there are some disadvantages to this approach, particularly where the demands have conservative
QoS constraints attached to them. For each edge, and each demand or (ingress,egress,QoS class) triple, we
need a decision variable. Even for a relatively small but densely connected network of a hundred nodes and
ten tra�c classes we may require hundreds of millions of decision variables. Fortunately these variables will
tend to be very sparse, i.e. for any demand most of these decision variables will be 0.

A more serious problem arises when the demands have QoS constraints. Given an edge-based solution to
the problem we will need to convert this into a set of paths in order to map these to a set of LSPs. A demand
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will often have additive QoS constraints associated with it, such as maximum hop length or delay. It can
be extremely di�cult to represent some of these constraints in the form of edge constraints and objective
functions. Some of these issues are discussed in [Mitchell 2004a]. A simplistic approach might be to ignore
such constraints during the optimization process. We then convert the edge solution to paths, and check
that each of these paths satisfies the QoS constraints for the demand. If the QoS constraints are not too
onerous then we may be fortunate and find all the paths satisfy these constraints. f they don’t we may need
to discard the unacceptable paths and hope there is still enough residual link capacity to route the demand
along a path that does satisfy the constraints. Of course, the more demands that have to be handled in this
way, the further we move away from the globally optimum solution. Where the QoS constraints are very
strict we may find that the majority of the paths found by the edge-based approach are invalid. In these
cases a path-based approach to the problem may be preferable.

4.2 Path-based modeling of demands

In a path-based model we start by computing a set of candidate paths, paths that are likely to form good
routes between ingress and egress, whilst respecting the QoS requirements of the demand. The optimizer
then allocates the demand to these paths in a globally optimum fashion. In this approach we need a decision
variable for each (demand,path) tuple. This may require more or less decision variables than the edge-based
approach, depending on how many candidate paths we generate for each demand. The main advantage
of such an approach is the ability to select only those paths that could satisfy the QoS constraints of the
demand. Unfortunately the optimality of the solution is only as good as the selection of candidate paths.
Choose too few and you may miss a better solution. Choose too many and the problem may become
intractable.

In a situation where there are few or no constraints on acceptable paths then an edge-based formulation
seems preferable. Routing a demand representing best-e↵ort tra�c is a good example of where an edge-based
formulation is suitable. For demands with strict QoS constraints, such as VoIP tra�c, than a path-based
approach is often preferable. Some demands could be handled by either approach, and detailed timings need
to be performed to ascertain the best approach. An optimization suite needs to support both approaches,
choosing the best technique to use for each demand.

5. CANDIDATE PATHS

The path-based model requires a set of candidate paths for each demand. These paths must be chosen to
satisfy the QoS requirements associated with the demand. There may be many potential paths between
ingress and egress, particularly when the QoS requirements are quite loose, or the network connectivity is
very dense. We could select all possible paths that satisfied the QoS constraints, but this would obviously
not scale well as the network size increased. At the other extreme, if we select too few paths then we run
the risk of not being able to satisfy the demand. Furthermore, even if the demand is satisfied, it may be at
the expense of a non-optimal route for one or more of the other demands. As we don’t know, in advance,
which paths would be chosen in an optimal solution, choosing a set of paths is largely guesswork. The
prototype currently uses a variant of the A*Prune algorithm[Liu and Ramakrishnan 2001] to generate a set
of candidate paths.

The A*Prune algorithm combines the well-known A*-search with pruning. As paths are expanded out
from the root node we use the shortest projected path length to prune paths that cannot lead to a successful
solution. Furthermore, the candidate paths are ordered such that the path with the shortest projected
length is selected and expanded first. We terminate our expansion procedure once we have found enough
acceptable paths, or there are no candidate paths left.

How many candidate paths do we need to generate for each demand? We start with a user-settable limit
N , typically < 10. Having found N paths, the total available bandwidth for these paths may still be less
than the bandwidth required for the demand. In such cases the implementation attempts to find additional
paths until either there is su�cient bandwidth, or too much time has elapsed. Note that this approach is
still not guaranteed to succeed. Other demands may also need to be routed over these links, consuming
some of this bandwidth. A better approach might be to keep going until the bandwidth supported by the
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paths exceeds the required bandwidth by a user-specified factor.

The heuristic just described allows the algorithm to return more than N paths in some cases. However,
there are also occasions where we would like to return less than N paths. In some networks searching for
N paths that satisfy the QoS constraints can be very time-consuming. Ideally, we would like to find all N
paths. However, suppose we reach the state where we have found N 0 paths, where N 0 < N . If these paths
have su�cient bandwidth to satisfy the demand, and we have already spent a lot of time finding them, then
it may make sense to terminate the algorithm prematurely. The A*Prune algorithm is iterative in nature,
and so we can control the duration by a bound on the number of iterations. Initially, this bound is set to
a large number. Once we have found su�cient paths to potentially satisfy the demand we start reducing
the bound. Each additional path found reduces the bound further, until we either find all N paths or the
number of iterations reaches the current bound.

The algorithm generates the paths ordered by “weight”. Where a single attribute is being considered,
such as hop count, then this results in the paths being generated ordered by path length. Similarly, if we
were considering path cost then the paths would be ordered by cost. Where multiple attributes are being
considered simultaneously then the algorithm needs some way of translating the individual metrics into an
aggregated weight for ordering purposes. The implementation is parameterized on a function that performs
this task. Ideally the weighting given to each of the additive attributes should be under the control of the
user, allowing greater emphasis to be placed on path cost for example. At present the weightings are fixed,
with the paths generated in increasing path length. Note that this function only controls the order in which
paths are generated. If we asked for all paths then we would get the same set, irrespective of the weighting
function, and all paths in this set would satisfy the QoS requirements. However, in practice we will only
select a small number of members from this set, typically the first N solutions found, and so the weighting
function controls which subset is calculated.

The solution found by the optimizer will only be optimal with respect to the set of candidate paths we
generate. Indeed in some cases we may not be able to satisfy a demand at all because other demands have
exhausted the capacity of the candidate paths generated for this demand. What should happen when we
don’t find a solution? There are a number of options open to us. We could increase N , the desired number
of candidate paths, for all demands and rerun the optimizer. This would be time-consuming, although we
could start the solver in a state representing the previous partial solution if the solver allowed this. It would
require additional bookkeeping within the application to update the solver with this information. We could
just search for additional paths for those demands that couldn’t be totally satisfied. Assuming we could find
such paths we would rerun the optimizer with this new set. Alternatively, we could just keep the solution
for the demands that were satisfied and attempt to use CSPF on the residual network for the remaining
demands. The current prototype uses none of these heuristics assuming, instead, that the network links are
su�ciently lightly loaded that this scenario is unlikely to occur.

Even if all demands are satisfied, the choice of candidate paths may lead to a very non-optimal solution.
Consider the network shown in Figure 2, taken from [Köhler and Binzenhöfer 2003]. With a single demand
between every pair of nodes, there are 380 demands that need to be routed. We assume that all these
demands have no QoS constraints, i.e. they represent best-e↵ort tra�c. This assumption, coupled with the
high degree of connectivity between nodes in this example, makes the solver very sensitive to the choice
of candidate paths. The following table illustrates the problem. The N = 0 row shows the average and
maximum link utilization when the problem is optimized using an edge-based model, with “Kohler Average”
[Köhler and Binzenhöfer 2003] as the objective function. The subsequent rows show the behavior of the
optimizer when using a path-based approach for increasingly large sets of candidate paths.
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Fig. 2. A densely connected network topology

Maximum candidate paths, N Average Maximum LSPs
Edge-based solution, 0 23.76 43.64 395

1 23.37 96.64 380
2 23.37 51.85 389
4 23.39 49.17 391
6 23.43 48.06 395
8 23.49 47.30 398

10 23.49 47.30 395
15 23.83 44.78 394
20 23.92 43.64 396
40 23.76 43.64 399
60 23.76 43.64 395

Consider the Maximum column first. We see that for very low values of N the path-based approach performs
far worse than the edge-based one. Indeed, in some tests it was worse than an online CSPF approach. We
have to generate 20 candidate paths for each demand before the maximum link utilization is comparable
to the edge-based case. If we now look at the Average column we see that the value for N = 20 is still
higher than the edge-based case. Choosing N = 40 fixes this, but the number of LSPs required to support
these demands is still larger than the optimal solution. It is only when we reach N = 60 that the two
approaches converge. As an aside, note the relatively small amount of demand splitting in the optimal
solution, indicated by the number of LSPs, even though the particular optimization criteria being used does
not penalize splitting.

Clearly in this example we should use an edge-based approach to solve the problem. The main disadvantage
of such an approach, the di�culty in enforcing QoS constraints, does not apply here. In examples where the
QoS constraints are a lot more restrictive the path-based approach works well. This is because the number
of acceptable candidate paths will be quite small, and so beyond a relatively small value of N the candidate
path set will not change.

For examples between these two extremes the best strategy is less clear, and we may need to resort to
using heuristics. For example, we could choose a relatively small value for N , but then run an edge-based
optimization to identify additional acceptable candidate paths to add to this set. If we find that all paths
in the edge-based solution satisfy the QoS constraints then there is no need to run the path-based version
at all.

In some cases the first N paths may be very similar to each other. Consider the example illustrated in
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Figure 3. The first N paths we select might only di↵er by the first two hops, with the rest of the path
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N11
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N15

Fig. 3. Pathological candidate path example

being common to all the members of the candidate set. If the bottlenecks occur in the remaining segment
of the path then we will not have any alternative routes, even though it looks like we have provided the
optimizer with lots of alternatives. There are no really foolproof solutions here, other than a collection of
heuristics. As mentioned earlier, we could use an arc-based solution to suggest paths, or generate more than
N paths initially, followed by a filtering phase to promote “variety”. But in pathological cases this may be
counterproductive. Another approach might try to identify structural or hierarchical properties that might
be exploited. But perhaps it is better to use such hints to decompose the whole optimization, rather than
just for candidate path selection.

MPLS allows label-switched paths to be loose or strictly routed. In the loose case a partial route is
specified, in the extreme case containing just the ingress and egress, and the system attempts to fill in the
gaps. At present the TOAD prototype does not allow such routing constraints to be attached to demands. If
they were added it would clearly complicate the candidate path selection process. For example, consider the
case where a single intermediate point P is specified. We might Construct (up to) N candidate paths from I
to P using the original QoS constraints, and then another N from P to E. We would then need to choose from
the N2 combinations the N paths with the smallest weight that satisfy the QoS constraints. This is clearly
ine�cient, and certainly doesn’t scale when there are multiple intermediate node constraints. A better
approach might be to develop a modified version of A*Prune that enforced these additional constraints as
part of its operation. Of course we could take the view that loose specifications are only of use when an
operator doesn’t have access to an o✏ine system, and so we can ignore these at the demand level.

A network topology, excluding intermittent faults, changes far less frequently than the demands over
the topology. This suggests it may make sense to cache good routes in a database, giving us a head start
when rerunning the optimizer. The candidate path selection process in the TOAD prototype is relatively
unsophisticated at present, and therefore fast in comparison to the LP solver that has to process the resulting
paths. The prototype therefore doesn’t implement a path caching mechanism.

We now turn our attention to the case where there are multiple demands between two points, each with a
di↵erent tra�c class and priority. We could argue that we should route the strictest demands first, and then
use the same paths for the more liberal demands to save time. Such a strategy might also lead to greater
sharing of LSPs, using the EXP bits, in the provisioned solution. But we could also argue we need more
LSPs for the more liberal demands with low priority, on the grounds that a lot of the bandwidth may have
been consumed by other demands before we get a chance to route the low priority demands. It is hard to
start the A*Prune algorithm in mid-flow, and so if we require additional paths we have to start from scratch
again. This suggests a strategy where we generate more than N paths for the liberal demands and then pick
the first N of these that satisfy the stricter constraints for the higher priority/stricter demand. At present
the prototype doesn’t attempt to optimize path selection for such cases, with each demand being treated
independently.
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This discussion also suggests a limitation of the current approach. Given tra�c classes with di↵erent
priorities, we optimize them in stages. But the candidate paths are computed for all demands in advance,
and loaded into the optimizing component (see Section 6). With hindsight, it may make more sense to just
compute candidate paths for those demands with the highest priority tra�c classes. After these have been
routed we then construct the candidate paths for the demands with the next highest priority tra�c classes
using the residual network bandwidth. This would have the advantage of not constructing paths for low
priority tra�c that are infeasible once the higher priority demands have been placed. Due to the low link
utilizations typically encountered in real networks, this limitation may be more theoretical than real.

The TOAD prototype supports both edge and path-based demands, which raises the question of how the
TOAD distinguishes between these cases. At present, any demand without an associated candidate path set
is treated as an edge-based demand. Candidate path generation is triggered manually by the user, allowing
the number of paths to be configured. Running the optimizer prior to this step results in all demands being
treated as edge-based demands. A tra�c class with a maximum hop count of zero will produce empty
candidate path sets for all the demands associated with this class. We use this convention when we wish to
use the edge-based strategy on a subset of the demands.

6. THE SOLVER

The primary role of the TOAD prototype is to solve multicommodity flow problems that arise as a result
of optimizing demand placement. We could use heuristics to perform this task, as illustrated by [Lee et al.
2004]. However, our current approach is to use a linear program to solve the problem, relying on hierarchical
decomposition to make the solution scaleable. Chapter 17 of [Ahuja et al. 1993] provides a good introduction
to the general multicommodity flow problem. At this stage in the discussions the reader may find it helpful
to refer to Figure 4, where an overview of the TOAD architecture is presented.

Those readers just wishing to get an overview of the TOAD can skip over the remainder of this section.
It contains a lot of details that may be hard to follow without some prior knowledge of linear programming,
modeling languages, and the multicommodity flow problem

6.1 MPL

The TOAD prototype currently uses the MPL modeling language from Maximal[Maximal 2004], with XA
as the underpinning solver. Quoting from Maximal’s web site, “The MPL Modeling Language o↵ers a
natural algebraic notation that enables the model developer to formulate complex optimization models in
a concise, easy-to-read manner. Among modeling languages, MPL is unrivaled in its expressive power,
readability, and user-friendliness. The MPL Modeling Language was designed to be very easy to use with
a clear syntax making the process of formulating models in MPL e�cient and productive. MPL is a very
flexible language and can be used to formulate models in many di↵erent areas of optimization ranging
from production planning, scheduling, finance, and distribution, to full-scale supply-chain optimization.”
Unfortunately, MPL doesn’t always live up to these expectations . . .

There are many di↵erent models we might wish to use in a TE optimizer, depending on the exact problem
we are trying to solve, and the optimization criteria we wish to use. Rather than hard-wiring all these
decisions into the application, the TOAD allows part of the model to be imported via a strategies file.
This file, using XML format, contains one or more templates, and one or more strategies based on these
templates. Many strategies are similar to each other, just di↵ering in the objective function. The templates
factor out those aspects of the model common to a set of strategies. So a typical strategies file would look
like

<?xml version="1.0" encoding="utf-8"?>
<strategies xmlns:xsi=’http://www.w3.org/2001/XMLSchema-instance’

xsi:noNamespaceSchemaLocation=’Strategies.xsd’>
<template name = "DemandPlacement" ... />

<strategy
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Fig. 4. An abstraction of the TOAD architecture

name = "TotalDeficit"
template = "DemandPlacement">
...

</strategy>

<template name = "AdditionalBandwidth" ... />

<strategy
name = "AdditionalBandwidthLinks"
template = "AdditionalBandwidth">
...
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</strategy>
</strategies>

We start by describing the structure of the templates, and then define some example strategies.

6.2 Templates

An MPL model for optimizing path-based demands minimising routing costs would look very similar to one
that minimized the maximum link utilization. In both cases many of the constraints would be identical. We
would like to factor out the common aspects of these problems, allowing each strategy to not be obscured
by the common infrastructure. Most of the instance-specific features can be separated o↵ into separate data
files that can be loaded by the solver. However, a few aspects of the problem, such as the number of vertices
for example, cannot be treated in this way. We therefore introduce templates, i.e. chunks of MPL containing
metavariables that are instantiated each time we solve a problem instance.

The TOAD currently supports two kinds of templates. The first, a “demand placement” template, is
used to compute a set of routes for the demands. The result of the optimization process is a bandwidth for
each candidate path, in the case of a path-based demand, and a bandwidth for each (demand,edge) pair for
edge-based demands. But there are other related problems we may be interested in. For example, suppose
there is insu�cient bandwidth in the network to satisfy all the demands. We may wish to know which links
would need to be increased in capacity, and by how much, in order to satisfy these demands. Altering links
is expensive, and so we might also wish to know what are the minimal set of links that would need to be
altered to satisfy the demands. The results of optimizing such a problem are rather di↵erent to the demand
placement case, and we use an “additional bandwidth” template for this situation. Additional template
types may be added in future, as the need arises.

The model eventually passed to the solver is constructed from three sources; the strategy being used, the
template on which this strategy is based, and details of the particular problem being optimized, such as the
number of nodes and edges. The template body is an MPL program, extended with a set of metavariables
that are expanded out prior to processing by the solver. We won’t go through an example template in
its entirety, although Appendix A provides su�cient details to give the reader a flavor of what they look
like. To fully appreciate all the details of a strategies file would require some familiarity with MPL, and
its syntax; providing this level of detail is outside the scope of this report. The appendix can therefore be
safely skipped by most readers.

6.3 Strategies

We have talked about optimizing the placement of demands, but in reality there are a number of di↵erent
criteria we might be interested in, each of which could be optimized. Examples include routing delay, routing
cost, number of paths, maximum link utilization, and average link utilization. In many situations we will
require some tradeo↵ between these potentially conflicting objectives, in other words a solution that balances
two or more of these objectives in a weighted fashion.

In cases where all the demands cannot be satisfied simultaneously we may wish to know the amount
of additional bandwidth required to satisfy these demands. Upgrading lots of links will be disruptive and
expensive, and so we may wish to know the minimum number of links that would need to upgraded in order
to satisfy a demand.

Some QoS classes, and hence demands, may have a higher priority than others. By this we mean that
they should be more likely to be assigned an optimum route, and also be more likely to be satisfied, than
those demands with lower priorities.

We could hardwire all these di↵erent cases into an application. However, the set of all possible strategies
is hard to predict in advance. The best strategy to use will typically depend on the particular operating
environment. A tool like the TOAD could be tasked with just generating a collection of data tables, with
the model itself stored separately in a user-editable file. Whilst flexible, such an approach has a number of
deficiencies. A user has to have detailed knowledge of a modeling language, and it would be easy to break
the system. Furthermore, the application also has to be able to load back any solution and display it in
a more user-friendly form, suggesting that at least part of the model has to remain fixed. Finally, some
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strategies may appear complex when written in the modeling language, but be conceptually very simple. A
strategy consisting of a hybrid of other strategies is a good example, or the encoding of a piece-wise linear
cost function. We therefore adopt the approach of describing strategies within our XML format strategies
file, allowing us to impose some structure on each strategy, with the TOAD performing some of the tedious
work involved in translating the strategy into a valid MPL fragment.

We start with a simple example, the ’Kohler Average’ optimization criteria taken from [Köhler and
Binzenhöfer 2003].

<strategy
name = "KohlerAvg"
description = "Minimize average link utilization"
prioritize = "true"
template = "DemandPlacement">

<objective>
Value[KohlerAvg]

</objective>

<constraint><![CDATA[
avg_utilization:

Value[KohlerAvg] =
SUM(edge: IIF(bandwidth=0, 0, Allocated / bandwidth));]]>

</constraint>
</strategy>

Each strategy has a name, which is used for menus, and a description which is used in tool tips. The
strategy specifies which template to use, and also whether the strategy should reflect tra�c class priorities.
A strategy must define an objective, which in the TOAD framework typically consists of the value of a
decision variable, together with one or more constraints that bound this variable.

Here is a more complex example, illustrating the introduction of additional variables and constraints.
This strategy corresponds to ’Kohler Hybrid’, again taken from [Köhler and Binzenhöfer 2003].

<strategy
name = "KohlerHybrid"
description = "Kohler hybrid"
prioritize = "true"
template = "DemandPlacement">

<variable> averageUtilization </variable>
<variable> maximumUtilization </variable>

<objective>
Value[KohlerHybrid]

</objective>

<constraint><![CDATA[
hybrid:

Value[KohlerHybrid] =
1000 * maximumUtilization + averageUtilization;]]>

</constraint>

<constraint><![CDATA[
avg_utilization:

averageUtilization =
SUM(edge: IIF(bandwidth=0, 0, Allocated / bandwidth));]]>
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</constraint>

<constraint><![CDATA[
max_utilization[edge]:

Allocated
<= maximumUtilization * bandwidth / 100.0;]]>

</constraint>
</strategy>

The KohlerHybrid strategy attempts to balance two di↵erent optimization criteria, the maximum and
the average link utilization, in a single strategy. In some cases it may be preferable to define each strategy
independently. We then combine the individual objective functions into a single function by using a weighted
mean. However, due to possible di↵erences in their scale, the objective functions need to renormalized by
a factor, as discussed in [Erbas and Mathar 2002]. Hybrid strategies can be encoded in the strategies file
using the following format.

<strategy
name = "HybridExample"
description = "Hybrid"
prioritize = "true"
template = "DemandPlacement">

<strategy name = "RoutingCost" weight = "1"/>
<strategy name = "LoadBalance" weight = "1"/>
<strategy name = "Paths" weight = "1"/>

</strategy>

In this example the model would first be run three times. For each run only one of the objective functions
is minimized, without taking the others into consideration. Each objective function is evaluated at each
solution, and these are then used to calculate the appropriate normalization factor for each function. Finally,
we solve the model using an objective function built from the sum of all three objectives, each one being
multiplied by its normalization factor. This will clearly be more time consuming than combining optimization
criteria in a more ad hoc fashion, as was done in the KohlerHybrid strategy. However, the structure of the
strategy is clearer in the pure hybrid example, and the tradeo↵s between each substrategy are easier to see.

We could handle tra�c class priorities in a number of di↵erent ways. For example we could just use the
priority as a weighting on the cost functions. If the routing cost of a path was weighted by the priority
of the demand crossing the path, then the objective would tend to place higher priority demands over the
shorter routes. However, this complicates the interactions between objective functions. It also gives us no
guarantees that the system won’t satisfy a lower-priority demand at the expense of a higher-priority one; it
just makes it less likely. An alternative approach is to use stratification. We place all the demands with the
highest priority first. We then solve those of next-highest priority using the residual network, and continue
this process until all the demands have been placed. This approach is not necessarily optimum, as it ignores
subsequent demands of lower priority during each optimization step. There may be two solutions to placing
the highest priority demands with the same cost. But one solution may allow the remaining demands to be
placed optimally, whereas the other one may only allow suboptimal solutions. However, given the objectives
we are likely to use, this strategy should work acceptably, and is the approach adoped by the TOAD.

In many situations we may wish to use a non-linear cost function. For example, the cost of using a link
should be more when the link utilization is reaching 100%. Such a cost function would tend to spread the
load more evenly. But using non-linear functions moves us out of the realm of LP systems into more exotic,
and potentially slower, solvers. A compromise is to describe such cost-functions by piece-wise convex linear
functions. These are often quite adequate for our needs, and a typical example is described in [Erbas and
Mathar 2002]. To code up such functions we just enumerate the points where the gradient changes. The
TOAD ensures that these points define a valid function, and then uses this information to construct an
appropriate set of constraints. Ideally, it would be useful if graphs such as these could be displayed and
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altered within the TOAD. This would provide a convenient mechanism to allow the user to alter the exact
form of a load balance cost function, and then rerun the optimizer, for example. At present, the user has to
edit the functions manually, using the following syntax.

<piece-wise codomain="theta" domain="lambda" parameters="[edge]">
(0, 0)
(1/3, 1/3)
(2/3, 4/3)
(9/10, 11/3)
(1, 32/3)

</piece-wise>

This example would be converted into the following MPL constraints, after checking that the points formed
a convex surface.

theta_1[edge] : theta >= lambda;
theta_2[edge] : theta >= 3lambda - 2/3;
theta_3[edge] : theta >= 10lambda - 16/3;
theta_4[edge] : theta >= 70lambda - 178/3;

The C++ version of the TOAD prototype allowed the strategies file to be viewed and edited from within
the application. The Java version updates the menus to reflect the optimization strategies available when a
stragegies file is imported. However, these files have to be edited outside the TOAD environment.

6.4 CORBA server interface

Ideally you would like to run the solver directly from the TOAD application. However, this is not always
feasible. Your desktop machine might not be powerful enough to run a large LP problem. You might also
have more desktop machines than licenses. The TOAD prototype therefore adopts a client-server approach.
The client communicates with the server via a CORBA interface. The interface is currently extremely simple,
and is included in Figure 5. The TOAD client uses the interface to transfer model files, and the auxiliary

module Solver {

interface OutputFile {

void write(in string text);

void close();

};

interface InputFile {

string read();

void close();

};

interface Session {

string name();

OutputFile openOut(in string fileName);

InputFile openIn(in string fileName);

void solve(in string modelFileName);

void close();

};

interface Manager {

Session createSession();

void exit();

};

};

Fig. 5. The IDL for communicating with the LP server
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index and data files, to the server. It then requests the server to run the LP solver. After completion the
client can request the contents of the various files produced as a byproduct of the solving process.

Ideally, the CORBA server would embed the solver directly inside it, using OptiMax in the case of MPL.
However, at present we do not have a copy of this library, and so we call MPL as an external process. This
di↵erence is largely unnoticable to clients except that it doesn’t fail as gracefully as you might like, and
there is no mechanism for halting the process prematurely and retrieving a partial solution.

In our particular test environment the link between client and server is very slow. But even under more
favourable environments the data files describing the demands, paths and so on may be tens of megabytes
in size. We frequently wish to run the solver multiple times, with di↵erent optimization goals, in order to
find a compromise between the various potentially conflicting goals. Transferring the data files to the server
each time would be prohibitively expensive. The server therefore supports a session model. Clients create
sessions, upload data files to the session, call the solver multiple times within the context of a session, and
download results from the session. When the client terminates a session the files attached to the session are
deleted.

Fig. 6. The session window

7. CONVERTING ARC FLOWS TO PATH FLOWS

The final target of the optimization process is a collection of LSPs, together with the QoS constraints and
bandwidth reservations for each one. In the case of a path-based demand the mapping to LSPs is straight-
forward. Each candidate path with a non-zero amount of bandwidth allocation gets mapped into an LSP.
But what about arc-based demands? We know from the flow decomposition theorem[Ahuja et al. 1993]
that any non-negative arc flow can be represented by path and cycle flows. The proof of this theorem gives
us an algorithm for translating the flows across arcs into flows across a set of paths from ingress to egress.
Whilst, in theory, the algorithm might also identify a set of cycle flows, we would not expect to encounter
such a scenario in our situation. The objective functions used will penalize unnecessary link usage, and so
the presence of a cycle in the arc flow would lead to a non-optimal solution. Alternatively we could use the
two-stage process suggested by [Lee et al. 2004] to deal with these cycles.

The mapping from arcs to paths is not unique. Ideally you want to minimize the number of paths
generated. In practice there tends to only be a single path that is generated in most cases, and so this
simplistic approach may be su�cient.

Having converted the arc flows to path flows we check to ensure that each path satisfies the QoS constraints,
and discard any that don’t. This approach is satisfactory for demands with liberal tra�c constraints, such
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as best-e↵ort tra�c. If demands with strict QoS constraints were handled using the edge-based approach
then we may find there are many demands that are only partially satisfied. We could attempt to enforce the
QoS constraints within the model itself, as discussed in [Mitchell 2004a; Lee et al. 2004]. However, in these
cases it may be preferable to use the path-based approach, perhaps using the successful paths identified
by the edge-based solution to seed the candidate path sets. The current version of the TOAD does not
implement this refinement.

8. SNAPSHOTS AND SVG

Having run an optimization the user wants to see some results. The TOAD displays both a tree view of the
demands, and a graphical view of the network topology. Examples of these views are shown in Figures 7
and 8. Having completed a run of the optimizer the links in the topology view are color coded based on
the current link utilization. A summary of the current solution is also shown at the bottom of this window.
The tree view displays each router, and the demands originating at each router. In the case of a path-based
demand there will be a set of paths associated with the demand, and the optimizer will indicate how much of
the demand should be carried over each path. In the case of an edge-based demand the optimizer calculates
a set of paths corresponding to the edge flows produced by the solution, and displays these paths as children
of the demand.

Fig. 7. The demand view

Whilst these approaches may be su�cient for visualizing a single solution, they are not adequate when
you wish to see the changes that occur across multiple solutions. For example, you may wish to run
multiple optimization strategies to see the di↵erent tradeo↵s. Or gradually increase the demand bandwidth
requirements to see the projected e↵ect on the network links. Each time the optimizer is run the topology and
tree views are updated to reflect the current solution, losing the previous state. However, the TOAD provides
a simple snapshot facility, allowing the current state to be recorded, with an optional name. Furthermore,
the prototype allows sequences of snapshots to be replayed like a simple movie, allowing trends to be rapidly
identified.

Having run a sequence of experiments we would like to export the results in various forms. The TOAD
can export the snapshot movies in SVG format, allowing them to be embedded and replayed from within
a browser. Figure 9 illustrates this feature. Although not immediately obvious from a static screenshot,
clicking the various snapshot names on the left hand column causes the topology to change to reflect the
state corresponding to that snapshot. Furthermore, clicking on the camera icon displays a simple movie
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Fig. 8. The network topology view

that iterates through all these snapshots. If each snapshot was stored independently of all the others in the
SVG file these files could get very large. However, the TOAD generates a combination of SVG elements,
and JavaScript code to generate additional SVG elements from JavaScript data, resulting in comparatively
small SVG files.

There are many other ways of visualizing and exporting the data produced by multiple optimization runs.
The TOAD can also export charts summarizing link utilization statistics, again using SVG format. An
example is presented in Figure 10. There is one column for each snapshot. The lower part of the column
represents the average link utilization for the solution, whilst the upper part represents the maximum
utilization. The black line at, or near, the top of the column records the percentage of demands that were
satisfied in the solution. The particular example illustrated in the figure used a random constrained shortest
path first approach to place the demands, and gradually increased the bandwidth of each demand. In the
“+ 10%” snapshot we can see that not all the demands could be routed satisfactorily, presumably because
of an unfortunate ordering of the demands.

The results of an optimization run can be exported in a routes file, an example of which is shown below.

<routes
xmlns:xsi=’http://www.w3.org/2001/XMLSchema-instance’
xsi:noNamespaceSchemaLocation=’Routes.xsd’>

<ingress name=’San Diego’>
<egress name=’Argonne’>

<class name=’Video’>
<path bw=’10’/>
<path bw=’20’>

<hop name=’Houston’/>
</path>
<path bw=’15’>

<hop name=’Palo Alto’/>
</path>
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Fig. 9. An SVG file displaying multiple snapshots

Fig. 10. An SVG chart for multiple snapshots

</class>
<class name=’BestEffort’>
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<path bw=’5’>
<hop name=’Houston’/>
<hop name=’Atlanta’/>
<hop name=’College Park’/>
<hop name=’Princeton’/>

</path>
</class>

</egress>
...

</ingress>
...

</routes>

The routes file could be processed by a provisioning system, to deploy this solution. The file can also be read
back into the TOAD, allowing the set of candidate paths to be reused in subsequent runs of the optimizer.

9. TOADSCRIPT

Whilst the basic TOAD GUI may be su�cient for one-o↵ experiments, there are also situations where a
more automated approach is required. For example, suppose you are interested in a capacity planning sce-
nario where you want to gradually increase the demands between a set of endpoints and see the e↵ects on
the network links. Clearly you could perform these steps manually, but it would be very tedious. A better
solution might be to write a script to perform this task. The TOAD prototype has a JavaScript/EcmaScript
interpreter embedded within it[Lugrin 2004], specialized for running TOAD-related tasks. Using this TOAD-
Script interpreter it is possible to automate many repetitive tasks. Figure 11 gives an example script that
gradually increases the bandwidth requirements of every demand, routing them using CSPF routing at each
step. The resulting animated topology view, and link utilization chart, are saved in SVG files for later
viewing. It was this script that was used to construct the SVG files shown in Figures 9 and 10. The same
approach can be used to explore the e↵ects of link and node failures, di↵erent optimization strategies, and a
whole host of related problems. It is possible to construct simple dialogs using TOADScript, and scripts can
be added to the menu system. These features allow the TOAD application to be customized for individual
users.

10. FILTERS

Although the snapshot mechanism allows you to visualize course trends, this, by itself, is not su�cient.
For example, consider optimizing a problem using two di↵erent optimization strategies. We may find that
almost all the links and demands are largely una↵ected by the choice of strategy. However, there may be a
handful of links, or demands, that are treated very di↵erently by the two strategies. In these cases we might
like to suppress the display of links whose utilization di↵ered only slightly between snapshots. In other cases
we might only wish to display links or routers of a particular type, or links with a utilization or bandwidth
within a specified range. The TOAD implements a powerful filtering mechanism, illustrated in Figure 12,
to support these visualization goals. The topology and demand file formats are extensible, in that arbitrary
attributes can be attached to nodes, edges and demands. The filtering mechanism is adaptive, allowing
the user to filter on the particular attributes in use for the particular topology and demand files currently
loaded.

11. PERFORMANCE

In this section we explore the performance of the TOAD and its optimization strategies. The current
implementation of the TOAD uses the MPL modeling language. This language has no published grammar,
and an annoying habit of looping, hanging, crashing, or reporting content-free error messages whenever it
encounters models it doesn’t like. When coupled with the lack of a support contract, this makes it di�cult to
experiment with di↵erent formulations of the problem e�ciently. The results presented in this section reflect
the performance of the current models, but it is unclear to what extent the performance could be improved
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base = "...";

TOAD.load(base + "Kohler18.net");

TOAD.load(base + "Kohler18.dem");

function scaleDemands(percent) {

for (r in TOAD.network.routers) {

for (d in r.demands) {

d.bandwidth += (d.bandwidth * percent / 100);

}

}

}

function unscaleDemands(percent) {

for (r in TOAD.network.routers) {

for (d in r.demands) {

d.bandwidth = (d.bandwidth * 100) / (100 + percent);

}

}

}

TOAD.placeDemandsUsingCSPF();

TOAD.snapshot("Initial demand");

for (i = 5; i <= 100; i += 5) {

scaleDemands(i);

TOAD.placeDemandsUsingCSPF();

TOAD.snapshot("+ " + i + "%");

unscaleDemands(i); // Reset to base level

}

TOAD.saveSVG(base + "Results/Test.svg");

TOAD.saveSVGChart(base + "Results/TestChart.svg");

Fig. 11. An example TOADScript

Fig. 12. An example filter panel

by reformulating the problem, or using a more robust modeling language. The TOAD is also currently
hindered by the need to ship the data to a remote machine, over a slow connection. The timings presented
reflect the total elapsed time, including these connection overheads. For small examples the networking time
will tend to dominate. In a real implementation we would embed the solver within the application, avoiding
these overheads.

With these caveats out the way, we start by considering the tradeo↵ beween using a path- and edge-
based approach. Figures 13, 14, 15, 16 and 17 show the performance of the TOAD using three di↵erent
strategies on a variety of topologies. The Kohler Average and Hybrid strategies are taken from [Köhler and
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Binzenhöfer 2003]. As the names suggest, Kohler Average attempts to minimize the average link utilization,
whilst Kohler Hybrid balances the desire for a small link utilization with the requirement to minimize the
maximum link utilization. The Simple Hybrid strategy is defined by

<strategy
name = "SimpleHybrid"
description = "Simple routing cost/load balance hybrid"
prioritize = "true"
template = "DemandPlacement">

<strategy name = "RoutingCost" weight = "1"/>
<strategy name = "LoadBalance" weight = "1"/>

</strategy>

where RoutingCost attempts to minimize the overall routing cost by weighting the amount flowing over each
edge with the cost of using the edge, and LoadBalance implements the load balancing metric defined in [Erbas
and Mathar 2002]. The example topologies and demands are taken from [Köhler and Binzenhöfer 2003].
The dotted lines in each graph show the results obtained by using an edge-based strategy, for comparison
with the path-based results. The numbers above each point in the graph record the number of LSPs that
were required for that solution. In a few cases the solutions were only partial, with some of the demands
being only partially satisfied. These cases are indicated by a red LSP count. The demand set used in these
experiments has a single tra�c class, representing best-e↵ort tra�c. We might expect that this would favour
an edge-based strategy. However, the graphs illustrate that for many of these examples a relatively small
candidate path set is su�cient to yield a solution close to the edge-based version. Furthermore, as shown
in Figure 18, the path-based approach can produce these results quickly, at least for small examples. It is
only when we reach the Kohler20 example, where the topology is very stongly connected, that we start to
see the deficiencies of a path-based approach. In this example there are a large number of distinct paths
between each pair of nodes, and so we may need to generate a large number of candidate paths to ensure
our solution can use the optimum ones found by an edge-based approach. This example illustrates why it
may sometimes be useful to use the edge-based approach to seed the candidate path set, although this is
also time-consuming.

The graphs show that the Kohler Hybrid strategy does a better job of balancing the maximum and
average link utilization than the Simple Hybrid strategy. However, although not shown on these graphs,
the Simple Hybrid strategy produces solutions with a smaller standard deviation. It is also easier to adjust
the weighting between the average and the maximum components, and the cost function for link utilization,
making the Simple Hybrid approach rather more flexible than the Kohler Hybrid. For comparison, the
graphs also record the solution obtained by performing a simple “online” CSPF placement. These figures
are slighly pessimistic, as an online algorithm could be smarter than our current implementation, taking into
account the residual capacity of the links when placing demands. Nevertheless, even using these pessimistic
figures, we see that the di↵erence between an o✏ine globally-optimized solution and an online incremental
approach, is comparatively small when the average link utilization is considered. The di↵erence is more
marked when we example the maximum link utilization.

We now consider an example involving multiple tra�c classes. We use the example from [Mitra and
Ramakrishnan 2001]. There are four tra�c classes:

<class name=’Voice’ id=’0’ priority=’0’ hops=’3’ delay=’1000’ cost=’15’/>
<class name=’Video’ id=’1’ priority=’0’ hops=’3’ delay=’1000’ cost=’20’/>
<class name=’Premium’ id=’2’ priority=’0’ hops=’4’ delay=’3000’ cost=’10’/>
<class name=’BestEffort’ id=’3’ priority=’1’ hops=’0’ delay=’3000’ cost=’5’/>

This example illustrates a deficiency in the current tra�c class specification model. The Mitra paper defines
the Voice and Video classes as having the “minimum hop length”, whereas the TOAD only allows us to
specify absolute QoS constraints. Introducing a relative hop limit would be a simple extension. From this
tra�c class specification we can see that the best e↵ort tra�c has a worse priority than the rest of the
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Fig. 13. Kohler10 example (CSPF LSPs: 86, average 83.07%, maximum 100%)

Fig. 14. Kohler14 example (CSPF LSPs: 182, average 18.94%, maximum 47.57%)

Fig. 15. Kohler14 example (CSPF LSPs: 304, average 22.66%, maximum 98.83%)

tra�c. Furthermore, the hop limit of 0 forces the TOAD to use edge-based routing for this tra�c class. The
network in the paper is underprovisioned.

N LSPs Video Voice Premium BE Unsatisfied Avg Max S.D. Time

0 226 2 1 0 4 78350.0 73.42% 100% 19.07 7992

1 222 1 2 1 1 72735.0 76.72% 100% 16.13 6179

2 228 0 0 0 4 54800.0 76.01% 100% 19.17 6230

3 228 0 0 0 4 54800.0 75.79% 100% 19.75 6180

4 229 0 0 0 4 54800.0 76.08% 100% 19.24 6209

The table illustates the main deficiency of the edge-based encoding for such examples. Consider the first
row in this table, representing the case where all demands are placed using the edge-based approach. The
current model makes no attempt to enforce the QoS constraints for an edge-based demand. The system
therefore routes the video and voice calls over edges that, when converted to a set of paths, lead to invalid
solutions. In contrast, the path-based approach manages to route all the high-priority tra�c, and nearly
all the best-e↵ort tra�c. In the next table we double the link capacities to make the network loads more
manageable.
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Fig. 16. Kohler20 example (CSPF LSPs: 380, average 23.37%, maximum 96.64%)

Fig. 17. Kohler25 example (CSPF LSPs: 597, average 26.88%, maximum 77.38%)

Fig. 18. Kohler timings

N LSPs Video Voice Premium BE Unsatisfied Avg Max S.D. Time

0 230 2 0 1 0 23550.0 36.99% 58.84% 14.19 7932

1 225 1 0 0 0 0 38.78% 75.11% 16.00 6169

2 231 0 0 0 0 0 38.32% 58.84% 14.22 6229

The edge-based approach again results in some invalid routes. The path-based approach quickly converges to
an optimum solution as there are relatively few paths that can satisfy the QoS constraints of the demanding
tra�c classes.
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There is no “best” strategy for solving a tra�c engineering optimization problem. There are multiple
conflicting goals, and the best trade-o↵ will inevitably depend on the particular scenario and user preferences.
The TOAD allows the user to add additional optimization strategies via the strategies input file. A number
of di↵erent strategies have already been implemented, including

Routing Cost. Minimize the overall routing cost, by penalising links with long delays. Sum, over all edges,
the amount allocated to the edge multiplied by the delay for the edge.

Kohler Average. Minimize average link utilization, [Köhler and Binzenhöfer 2003].
Kohler Max. Minimize maximum link utilization, [Köhler and Binzenhöfer 2003].
Kohler Hybrid. Balance between Kohler Average and Max, [Köhler and Binzenhöfer 2003].
Load Balance. Make cost of using a link get higher as link utilization increases, using a piecewise-linear

cost function, [Erbas and Mathar 2002].
Paths. Minimize the number of paths used; only considers path-based demands.
Hybrid. An equal weight hybrid of Routing Cost, Kohler Average and Load Balance.

Figure 19 shows the di↵erent results produced by these stratregies, illustrating some of the tradeo↵s that
can be made.

Fig. 19. The performance of di↵erent strategies on Mitra topology

12. FUTURE WORK

12.1 Tunnels and protection

One of the advantages of MPLS over a technology such as ATM is that it supports tunneling to an arbitrary
depth through the use of the label stack. Tunneling can reduce signaling overhead, and reduce the state that
needs to be held in the routers. In some cases it may also make it easier to provide backup routes as well,
for example by just protecting a single tunnel rather than a set of paths that cross the tunnel. However, if
the tunnel gets too big then it may be di�cult to identify suitable backup paths. This raises the question
of where should we place tunnels. There are two obvious strategies. We could either use the demands and
topology to suggest good places for tunnels, and then perform a demand optimization as before. The tunnels
will just appear as virtual links, and we can direct the optimizer to use these, in preference to the raw links,
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by using appropriate cost functions. But such an approach has a number of obvious disadvantages. How do
we determine the best position for the tunnels, and what bandwidth should we give them?

A more plausible approach involves first placing the individual paths, and then determining a collection
of tunnels that can convey this tra�c. There may be multiple ways of breaking up paths into tunnels,
leading to another optimization problem[Menth and Hauck 2001]. Provisioning backup paths can also be
problematic, as there is a trade-o↵. If we have lots of small tunnels then there will be a lot of signaling
overhead, with state being maintained in each of the routers. We also have to determine backups for each
of these tunnels separately. At the other extreme, we may be able to tunnel all of the original LSPs through
a single LSP, at least for part of their route. But the bandwidth for this LSP will be large, and so if a
link fails then we may have di�culties provisioning a backup path of the required size. This argues for the
use of multiple smaller-dimensioned tunnels to simplify the path protection problem. The current TOAD
prototype provides no explicit support for tunneling, although the methodology described in [Mitchell 2004b]
might be used to suggest potential tunnels.

Network reliability is essential in core networks. Disruption can occur for several reasons, such as con-
gestion, and link and node failures. MPLS LSPs can be protected at the path, node and link levels. The
essence of path protection is in establishing an end-to-end backup tunnel for each of the primary LSPs. A
backup LSP must typically be link and node-disjoint with its corresponding primary LSP. When a failure
occurs the ingress router is notified of the failure, for example by RSVP-TE, and the tra�c for the LSP is
then rerouted to the backup LSP. The backup paths are typically computed at the time the LSP is initially
provisioned. Numerous approaches to this problem can be found in the literature, e.g. [Sidhu et al. 1991;
Bejerano et al. 2003; Grover and Doucette 2001]. Some approaches attempt to find primary and backup
paths simultaneously, whilst others view the problem as a two-stage process.

The signaling delay from when a node or link fails, to the ingress being aware of this failure, will often be
in the order of seconds. This is too long to satisfy many QoS constraints. Furthermore, the backup LSPs, if
preprovisioned, will double the LSP state that needs to be maintained by each router. The essence of node
and link protection is the establishment of local backup LSPs, or tunnels, that reroute all tra�c around a
failure. So, for example, to protect a link from n

1

to n
2

the system would establish an LSP from n
1

to n
2

that avoids this link. Since only a single, typically short, backup LSP is used for protecting a potentially
large number of primary LSPs that use the link, there may be substantial savings in the amount of LSP
state required. Furthermore, node n

1

can start using this detour as soon as it recognises the link has failed,
causing a delay in the order of milliseconds rather than seconds. Of course the detour may cause the new
path to violate the QoS constraints for the demand for a brief period, but this is typically preferable to a
total failure for a few seconds. Once the ingress router becomes aware of the failure it can signal a new LSP
that meets the tunnel constraints, and switch over to the new LSP if successful. The paths used by the link
and node protection LSPs can be computed o✏ine. Alternatively, some routers can be configured to find
and provision acceptable backup paths automatically.

The TOAD does not currently address the backup path issue. The solutions computed by the TOAD can
be protected using the automatic node and link protection facilities of the routers themselves, relying on
CSPF online routing for any secondary backup paths that may be required.

12.2 Transition policies

The tra�c demands that are fed to the TOAD represent projected demands for some future time period.
Whilst they have their basis in reality, in that the predictions use previously obtained tra�c matrices
obtained from the network, they should not be confused with these tra�c matrices. For example, as part
of the prediction process we may smooth the raw data by pruning outliers, remove some demands entirely
as they are too variable, and inflate the observed demands using trend analysis. So the demands fed to
the TOAD for a particular optimization time period may be very di↵erent to the demands observed at any
time in the past. The attributes attached to these demands should record the evidence used to produce
these predictions, so that if we find a prediction is very di↵erent from what we observe during the period a
solution is deployed then we can trace back to see how we arrived at these predictions. Information that is
not relevant to the prediction, such as historical performance data, is therefore best left out of the demand
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files, although it may still be worth collecting for other reasons.
Tra�c engineering is an iterative process. Predicted demands are constructed from tra�c matrices, and

other trend data. We then determine a set of LSPs, and routes, to support these demands, and these LSPs
are then deployed on the network. We then repeat the whole process again for the next time period. Of
course this description is too simplistic in reality. In an extreme case we may end up completely changing the
deployed LSPs every few hours, and no operator is going to be comfortable with such an upheaval to their
network. This suggests the need for transition policies to control the acceptable degree of change between
each optimization period.

Given a description of the currently provisioned set of LSPs, and a new set of demands, there are many
di↵erent ways of satisfying these demands, each with a di↵erent impact on the existing network. Until now
our description of the optimization process has completely ignored the current state of the network. This
approach may lead to unnessary changes to the network, where an LSP supporting a demand is replaced
by another LSP, with a di↵erent route, to support the demand at a later point in time, even though the
original LSP would have been equally acceptable. At the other extreme, we could imagine trying to support
the demands by making only the minimal changes to the existing solution. Here we trade o↵ optimality
for stability. For example, adjusting the bandwidth reservation of an LSP can be viewed as a fairly benign
operation, and in some cases we may be able to adapt the existing LSPs to the new set of demands by just
making such changes. Of course as time goes by the solution that results from making these minor updates
may start to depart substantially from the solution that would result from an unconstrained optimization.
This suggests that we should periodically relax our constraints, either after a fixed time period, or where
the di↵erence in optimimality between the solutions crosses a threshold.

We use the term ‘transition policy’ to refer to the rules controlling the freedom the optimizer has in
making optimization decisions. A transition policy might

• give the optimizer complete freedom to choose the LSP routes,
• force the optimizer to keep the current LSPs, but to minimize the bandwidth allocation changes,
• identify important demands, and their LSPs, that shouldn’t be altered if possible; where possible all

changes should be confined to the remaining demands.

Clearly there could be many other examples of transition policy. Ideally the TOAD should be extended to
allow such policies to be specified and enforced. Furthermore, there should be a mechanism for specifying
what policy should apply at each transition point. As we have observed earlier, we may wish to use a very
strict policy for most of the time, with a more liberal policy being used once a week, for example. This
suggests we also need an administrative policy to control our use of transition policies, for example “only
perform major reoptimizations once a week”. This situation is illustated in Figure 20.

Given a sequence of demand sets for consecutive periods of time, the transition policy generator determines
the transition policy that should be used for each run of the optimizer. This diagram also shows how
the result of this process should be a collection of provisioning scripts. Each script updates the current
configuration of LSPs, by changing bandwidths, adding and removing LSPs, to reach the next configuration.
The tra�c profile itself is produced from the tra�c matrices, plus additional trending information. This
process is illustrated in Figure 21. It is worth noting that the period over which the tra�c matrices were
generated, i.e. the duration spanned by Tra�c Matrix 1..N, is totally independent of the prediction times
�T1, ..., �TN. For example, we might use a large history to make predictions for a small amount of time
�T, or use a small history to extrapolate a long way into the future.

Whilst the approach illustrated in these figures is conceptually simple, it also has some limitations. It seems
reasonable to assume that management stations will be collecting performance data for the network, and that
this data should be able to influence the optimization/provisioning process. There are two obvious things
that could be influenced, these being the transition policies, controlling which demands should be reoptimized
at each step, and the duration of each optimization period. It is di�cult to support such an approach using
the architecture from Figure 20. Once the transition policy generator has annotated the profile file then
there is no opportunity to alter the transition policy between Demands �T2 and Demands �T3 in response
to monitoring the performance during �T1, or to shorten the period �T3. To allow such changes we
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Fig. 20. An batch approach to transition policies

need to move to a model where the optimization for period �T3 was being performed during period �T2,
where the transition policy has been chosen based on the administrative policy, perhaps in conjunction with
performance data collected during period �T1. This suggests we might eventually want to move towards
the architecture shown in Figure 22.

13. CONCLUSIONS

In a pure IP network routers react to changes in the network topology by computing new paths. This
has made the Internet an extremely robust communication network, even in the face of rapid growth and
occasional failures. However, such adaptive behaviour does not ensure that the network runs e�ciently. IGP
metrics can be adjusted to migrate some tra�c away from hotspots, but the ramifications of such changes
are often di�cult to predict, and frequently create as many problems as they solve. It can also be challenging
to provide QoS guarantees without resource reservations.

MPLS gives the operator control of the routes used for the tra�c, and can reserve resources along these
routes. Of course this power comes at a price, in particular the need for a signalling protocol to establish
the routes and reservations. Signalling protocols take time to establish an end-to-end connection, generate
additional signalling tra�c, and require state in each router. MPLS is therefore best suited to supporting
long-lived aggregated tra�c, rather than individual microflows. MPLS should not be viewed as a replacement
for IP, but rather as a complement to it. The route chosen for an LSP can be left entirely to the routers,
for example when provisioning an aggregated best-e↵ort tunnel. In other cases the operator may attach
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Fig. 21. Constructing tra�c profiles

QoS constraints on acceptable routes, such as the total delay, or require the LSP to pass through one or
more specified routers. Taken to extremes, the operator can even fix the exact route to be followed by the
LSP. However, there is a penalty to be paid for such precision. If any link fails along this path then the
MPLS tunnel itself will also fail, as no other paths will be able to match the specification. To address this
issue, LSPs are typically specified with loose constraints, allowing some flexibility in the route, or with a
secondary route specification that can be used as a backup, or a combination of these approaches.

Online CSPF routing can produce resilient solutions, together with acceptable QoS guarantees in many
cases. It is therefore natural to ask whether it is worth performing a costly o✏ine optimization to route these
demands. Performing a global optimization, of the form described in this document, requires demands that
are both stable and predictable. Of course even in the case of online LSP provisioning we require demands
to have these attributes, but not to the same extent. In particular, we do not need to predict demand
bandwidth requirements hours or even days in advance. Furthermore, in an online CSPF-based solution we
can dynamically adjust the demand bandwidth requirements as the need arises, computing a new route if
necessary. Whilst we can also use such techniques for LSPs that have been routed o✏ine, we can no longer
claim optimality after making such changes, undermining the justification for the o✏ine approach.

It seems clear that an o✏ine approach has stricter preconditions on the demands, and will often be
less resilient than an online solution. In some cases these disadvantages may be o↵set by improved network
utilization, making it important to quantify the potential extent of this improvement. However, it is di�cult
to make a fair comparison between the o✏ine and online approaches. After all, even in the online case the
operator can incorporate global knowledge, for example by partially specifying routes, or using a�nity
groups. Clearly we have a spectrum of possibilities, with online CSPF-based completely loose routing at
one extreme, and a global optimization using totally pinned routes at the other end.

The disadvantages of the o✏ine approach are fairly clear, namely the need to predict demands in advance,
the potential fragility of the solutions, and the time required to run the optimizations. What are the
advantages that can o↵set these problems? In a heavily loaded network an o✏ine optimizer may be able to
route more LSPs than an online one. This is because a CSPF solution, at least in its simplest form, takes
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Fig. 22. An incremental approach to transition policies

no account of future requests, either real or predicted. Many MPLS networks will typically allocate some
proportion of their capacity to LSPs, with best-e↵ort tra�c soaking up the spare capacity. In these scenarios
the link utilization required to support the LSPs may be relatively small (< 50%). Although CSPF routing,
in extreme cases, may not be able to route as many LSPs as a globally optimised solution, this situation is
unlikely to occur with such low average link utilizations. Of course a CSPF solution may still drive some
links close to their maximum capacity, as illustrated in Section 11. Furthermore, these links, and their
adjacent routers, may become su�ciently overloaded that the tra�c flowing across these links is adversely
a↵ected. In extreme cases this may result in SLA violations, with their associated costs. However, without
access to realistic cost models for networks, and SLAs, it is obviously di�cult to quantify the extent of this
advantage.

In addition to reducing the maximum link utilization, an o✏ine approach will also reduce the average
utilization in many cases. The results shown in Section 11 suggest that this improvement is comparatively
small in many cases. However, small di↵erences in average link utilization do not, of course, mean that the
cost savings will only be negligible. In some environments the operator may be using expensive leased lines,
and charged depending on the amount of bandwidth used. In such a setting a small change in utilization
may still translate into a substantial saving. However, without access to realistic costing models it is di�cult
to validate such assertions.

The TOAD allows a demand to be split across multiple paths. Clearly in some cases this flexibility can
be used to reduce link utilization by load balancing. Unfortunately, it is not always possible to spread the
tra�c across the LSPs without introducing additional packet reordering within the constituent microflows.
We have argued that there are some contexts, for example a voice gateway collocated with an MPLS ingress
router, where it may be possible to split a demand without splitting individual flows. Nevertheless, even in
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this case demand splitting requires additional mechanisms to enforce the desired bandwidth split. We must
therefore ask whether demand splitting is really worth the e↵ort required to support it. One advantage of
demand splitting is that it simplifies the LP model. Requiring our solutions to assign at most one path to
each demand moves us into the realm of Mixed Integer Linear Programming (MILP), which can often be
computationally more expensive to optimize. You might expect that the solutions computed by the TOAD
would make extensive use of demand splitting. However, our test results show that very few demands are
actually split in practice. The di↵erence between the number of LSPs used in the best solution, and the
number of demands, is typically quite small. Of course this does not mean that these additional LSPs are
not beneficial; in some cases there could be a substantial di↵erence in link utilization for one or more critical
links. Nevertheless, when there are many demands, each with a relatively small bandwidth requirement, then
splitting is rare, and has little impact on the optimality of the solution. Without access to representative
demand and cost data, it is hard to draw any firm conclusions about the benefit of such a facility in the real
world.

The TOAD prototype supports multiple egresses via virtual links and nodes. The initial motivation was
to support multiple voice gateways as potential egress points for a demand consisting of aggregated voice
tra�c. Although there will typically be a single preferred gateway for any call, in some cases other gateways
could also potentially forward the call. Furthermore, taking a more global perspective, it may be preferable
to use one or more of these alternatives to reduce the overall network load. Although this argument sounds
plausible in theory, the current tra�c matrix generation strategy, [Pollock 2004], does not support multiple
egresses. This makes it di�cult to assess the utility of such a feature in existing MPLS/VoIP deployments.
Multiple egresses could also be potentially useful in the hierarchical demands approach, as described in
[Mitchell 2004b], but these ideas would have to be explored further to reach any firm conclusions.

The current prototype does not scale to more than a few tens of nodes. The modelling system in use,
MPL/XA, tends to crash or hang when presented with large examples, making it di�cult to explore the
problem size boundaries in detail. The system is also very sensitive to how the model is encoded in MPL,
for example the parameter order in relations. It seems likely that the performance could be improved by
using an MPL consultant to tune the model. Some very large multicommodity flow problems have been
solved in other contexts. However, small changes to a model can have a large e↵ect on the computational
complexity, making it di�cult to draw too many conclusions or expectations from such results. It would also
be interesting to reimplement the model with other modelling languages and solvers, to assess the extent
to which MPL is the bottleneck. Unfortunately, we do not have access to any other solvers for comparison
at this time. There has been some preliminary work on the hierarchical decomposition of demands. This
approach could allow us to scale to much larger networks, but it depends crucially on the underlying network
topology. It is di�cult to assess whether such techniques are useful in practice, and/or what further heuristics
might need to be deployed, without access to representive topology data.

In this paper we have argued there is a need for both edge and path-based modelling of demands. Each
approach has its advantages and disadvantages. By supporting both techniques within a single model we
can optimize demands associated with many di↵erent tra�c classes. For demands with relatively strict
QoS constraints our results show that a path-based approach, with around ten paths, produces reasonable
results. However, for demands associated with more liberal tra�c classes, for example best-e↵ort tra�c,
the edge-based approach is the preferred solution. The edge-based model may also be useful for suggesting
additional candidate paths for a path-based demand. A drawback of the path-based approach is that our
solutions are only as good as the set of paths we have chosen. The edge-based approach does not su↵er from
this deficiency, but may generate solutions that violate the QoS constraints. If we could express end-to-end
constraints in the edge model then we could avoid this problem. However, it is not clear to what extent we
could do this, and our initial results are not encouraging.

Any optimization strategy that is used in a real deployment is likely to be a compromise. We would
like to reduce average link utilization, particularly where we are charged for link usage. However, we don’t
want to take this goal to such an extreme that some links are used to their full capacity. In such cases we
may prefer a slightly worse average utilization if this gives us spare capacity on all our links. We might
also wish to reduce the number of paths used, as each one will translate into an LSP, with its associated
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state and signalling overheads. We could build such compromise strategies in multiple ways. The hybrid
strategy approach, based on the work by [Erbas and Mathar 2002], allows us to build a hybrid out of two
or more simpler strategies, together with the weighting we wish to apply to each one. This is a very flexible
approach, but has the disadvantage that we need to run the optimizer n+1 times, where n is the number of
strategies in the hybrid. An alternative approach, as illustrated by the KohlerHybrid strategy, attempts to
balance competing goals within a single objective function. Constructing such a function can be challenging,
and it may also be di�cult to adjust the trade-o↵ weighting, or add additional criteria. However, our results
show that the monolithic approach is substantially faster than the structured approach, and can often yield
results that are at least as good. It seems likely that the structured approach, whilst elegant in principle,
will be too expensive, computationally, to be realistic in practice.

The candidate path selection process works well where the network topology is loosely connected, and/or
where there are strict QoS constraints. In these cases the number of acceptable paths may be less than N , the
number of paths we are looking for. The approach becomes more problematic when the number of potential
paths is very much larger than N . In these cases we may find that computing the first N paths gives us
insu�cient variety. Adding additional eligible paths from an edge-based solution is one approach that may
be worth pursuing, particularly if we store the candidate paths across runs, allowing us to amortize the cost.
The hierarchical demands approach also indirectly addresses this problem, as the candidate path problem
on a large graph is replaced by multiple problems on smaller graphs. The TOAD currently calculates the
candidate paths for all demands prior to running the optimizer. When using priorities it would make more
sense to generate the candidate paths at the start of each priority step. This would allow lower priority
demands to construct candidate path sets based on the residual capacity of the links.

If the TOAD were to be deployed in a production environment it would need a provisioning system. We
could drive such a system from the routes file. The provisioning tool would have to compare the desired
configuration with the current state to determine the set of changes that would need to be made. However,
if we adopted the transition policy approach described in Section 12.2, then the TOAD itself would “know”
the current state, and so it may be more natural for the TOAD to output just the changes. In either case
we need to consider precisely what we wish to provision. We could map each path into a strictly-routed
LSP, but this would make the solution very fragile. Fast-reroute link protection mechanisms may protect
us from link failures, but if a node fails then we may break the tunnel completely. This raises the question
of whether it might be preferable to convert the exact routes into partial ones, giving us a more robust
solution that may be easier to deploy, whilst providing most of the savings of the o✏ine solution. For
example, when routing a demand from Los Angeles to New York, we might determine the best approach is
to split the demand into two LSPs, one via Chicago, and the other via Houston. Whilst the solution will
compute the exact route to be followed by each LSP, it may be su�cient to provision the LSPs using a loose
specification, with a single intermediate hop constraint for each one. By allowing some flexibility in how the
tra�c reaches Chicago, and from there to New York, we may be able to make the solution more resilient,
whilst still achieving the broad tra�c engineering goals of the computed solution. Of course the problem
now becomes one of identifying which of the intermediate hops in the computed solution should be kept,
and which can be dropped. A simple heuristic might be to drop any hop that is on the shortest path from
the source to the hop destination. In the common case where an LSP follows the shortest path from source
to destination then no intermediate routers would need to be specified. However, where the tra�c is routed
away from a predicted hotspot then we would be forced to include additional loose hops. The downside of
such an approach is that we start to lose any QoS guarantees, particularly when links start to fail. But this
may still be the most appropriate compromise, given the cost involved in computing backup paths that can
cope with multiple failures, whilst also providing QoS guarantees.

In conclusion, this paper has described the main features of a prototype MPLS tra�c engineering system,
and an evaluation of its performance. It is di�cult to draw too many firm conclusions given the limited
access we currently have to representative data for network topologies and tra�c demands. If this situation
changed then it would be worth revisiting some of this analysis to evaluate how well such a system would
perform in practice, and to better quantify any operating e�ciency gains. Similarly, if we had access to a
provisioning system then it may be worth combining the tools, enabling a more complete exploration and
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analysis of the Tra�c Engineering life cycle. There are many areas of the TOAD that could benefit from
further development, if market conditions changed su�ciently to warrant such e↵ort. Reimplementing the
model using other modeling languages and solvers, for example AMPL/CPLEX, would allow us to assess
the extent to which MPL forms a bottleneck. Automating the provisioning of the calculated solutions would
provide a more complete solution to the TE problem. The provisioning process itself is not particularly
di�cult, other than the necessity of having to support multiple router vendors. The real challenge comes
when we need to incrementally reprovision the system, potentially having to roll back changes in the event
of failure. The desire to minimize such changes, whilst ensuring the deployed solutions do not depart too
far from the computed optimum, is clearly an area that could benefit from further exploration. Scalability
is another area that deserves more attention in the future. Preliminary work has suggested some promising
avenues for exploration, but these should be evaluated more rigorously if topology data and marketing
requirements ever become available.

A. TEMPLATES

A typical template might start with the following definitions:

<template name = "DemandPlacement"
type = "DemandPlacement"><![CDATA[

TITLE
$strategy;

INDEX
node := 0..$numVertices - 1;
src := node;
dst := node;

trafficClass := 0..$numTrafficClasses - 1;

demand := 1..$numDemands;
demandP[demand] := INDEXFILE("Admissible.dat", 1);
demandE[demand] := demand - demandP

The metavariables are of the form $x. So, for example, $numVertices will be replaced by the number of
vertices in the current problem when the template is expanded into a model. The file Admissible.dat is
generated by the TOAD and relates each demand to the set of paths that are admissible for the demand.
The domain of this map defines the set of path-based demands, called demandP in the model. The syntax
demandP[demand] defines demandP to be a subset of demand. The edge-based demands, called demandE in
the model, are all those demands that aren’t in demandP.1

The next part of the template specifies the topology, and paths across this topology.

INDEX
edge[src, dst] := INDEXFILE("Edges.dat", 1);
path := 0..$numPaths - 1;
traverses[path, edge] := INDEXFILE("Traverses.dat");
admissible[demandP, path] := INDEXFILE("Admissible.dat");

DENSE DATA
bandwidth[edge] := $bandwidth;
delay[edge] := SPARSEFILE("Edges.dat", 3);
requested[demand] := SPARSEFILE("Demands.dat", 3);

The edge index defines the subset of the cross-product between nodes forming the edges of the network. The
file Edges.dat is generated by the TOAD. The index traverses defines which paths traverse each edge.

1To work around bugs in MPL, the exact definition of these index sets has to be slightly more complex in reality.
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The index admissible defines which paths are acceptable for each of the path-based demands. Each edge
has a bandwidth and a delay, and there is a bandwidth requirement associated with each demand.

Each demand has an associated tra�c class. It also has one or more ingresses and egresses, depending on
how flexible we wish the model to be.

INDEX
demandClass[demand].trafficClass := INDEXFILE("DemandClass.dat");
demandClassFn[demand,trafficClass] := INDEXFILE("DemandClass.dat");

ingress[demand, node] := INDEXFILE("Ingresses.dat");
egress[demand, dst] := INDEXFILE("Egresses.dat");

This fragment illustrates one of the (many) oddities of MPL. The association between demands and tra�c
classes can either be viewed as a subset of the crossproduct, or as a total function from demands to tra�c
classes. The two indexes, demandClass and demandClassFn, reflect these two views. The reason for defining
both of them is that the function view isn’t supported by MPL in all contexts. For conciseness and clarity
we use the functional index where possible, but have to use demandClass in some contexts.

The TOAD allows priorities to be associated with tra�c classes. The classes with the highest priority are
optimized first. The classes with the next highest priority are then optimized on the residual network. And
so on. We could generate a separate model, and data files, for each priority level. An alternative approach,
adopted by the TOAD, is to specify the current set of “active” tra�c classes. Only those demands whose
tra�c class is in the active set will be optimized by the model. The following index sets encode this approach

INDEX
active[trafficClass] := $pclass;
selected [demand]

WHERE FORSOME(trafficClass IN active: trafficClass IN demandClassFn);
selectedE[demandE]

WHERE FORSOME(trafficClass IN active: trafficClass IN demandClassFn);
selectedP[demandP]

WHERE FORSOME(trafficClass IN active: trafficClass IN demandClassFn);

Given a set of active tra�c classes, via the $pclass metavariable, selected is the set of active demands,
selectedE the subset of these that are edge based, and selectedP the path-based demands. During each
run of the model it is the demands in selectedP and selectedE that are optimized. Having optimized
the highest priority demands, the remaining demands must be optimized on the residual network. The
$bandwidth metavariable takes care of this. Initially it is expanded into an expression representing the
bandwidth of each each. For subsequent optimization steps it is replaced by an expression denoting the
current residual network.

We allow the model to have multiple objectives. For example, in a hybrid strategy we may wish to
optimize a number of di↵erent objectives simultaneously. The objective index enumerates the names of
the di↵erent objectives.

INDEX
objective := (

TotalDeficit,
$objectives

);

The optimization process computes the values of a set of decision variables, whilst minimizing or max-
imising some objective function. Some of the decision variables depend on the particular strategy being
used, whilst others are common to all strategies.

DECISION VARIABLES
$decisionVariables
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Value[objective]
EXPORT Activity TO SparseFile("ObjectiveValues");

AllocatedE[demandE IN selectedE, edge]
EXPORT Activity TO SparseFile("AllocatedEdges.dat");

AllocatedP[demandP IN selectedP, path IN admissible]
EXPORT Activity TO SparseFile("AllocatedPaths.dat");

Residual[edge]
EXPORT Activity TO $residual;

Allocated[edge];
Deficit[demand IN selected];

Some of these decision variables are written to files at the end of the optimization process. These form the
solution to the problem, and are read and visualized by the TOAD after the optimization has completed. The
values of the decision variables are subject to various constraints. Some of these constraints are dependent
on the particular strategy being used, whilst others encode general constraints that should always hold. The
constraints have to deal with both path and edge-based demands.

SUBJECT TO
! Common constraints

EdgeAllocation[edge] :
Allocated =

SUM(demandP IN selectedP, path IN traverses: AllocatedP)
+ SUM(demandE IN selectedE: AllocatedE);

ResidualBandwidth[edge] :
Residual = bandwidth - Allocated;

TotalDeficitValue :
Value[TotalDeficit] = SUM(demand IN selected: Deficit);

! Edge demand constraints

IngressFlowsIn[demandE IN selectedE, node IN ingress] :
SUM(edge OVER src: AllocatedE[demandE, edge]) = 0.0;

IngressFlowsOut[demandE IN selectedE, node IN ingress] :
SUM(edge OVER dst: AllocatedE[demandE, edge])
= requested - Deficit;

TransitBalance[demandE IN selectedE, node]
WHERE NOT (node IN ingress) AND NOT (node IN egress) :

SUM(edge OVER src: AllocatedE[demandE, edge]) =
SUM(edge OVER dst: AllocatedE[demandE, edge]);

EgressFlowsIn[demandE IN selectedE] :
SUM(node IN egress,

edge OVER src: AllocatedE[demandE, edge])
= requested - Deficit;

EgressFlowsOut[demandE IN selectedE, node IN egress] :
SUM(edge OVER dst: AllocatedE[demandE, edge]) = 0.0;
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! Path demand constraints

SatisfyDemand[demandP IN selectedP] :
SUM(path IN admissible : AllocatedP) = requested - Deficit;

$constraints

These constraints enforce the preservation of flow, and ensure that the flow over a link is never more than
the capacity of the link. The Deficit variables record how much of each demand cannot be satisfied in the
solution. The objective functions should heavily penalize non-zero values for these variables. We ensure this
by defining the objective to be

MIN $objectiveFunction
+ 10000000 Value[TotalDeficit];

where $objectiveFunction is expanded into the objective for the strategy in use.
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