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An OSI NETeXPERT VSM-managed system consists of hardware network elements that communicate with each other. These
network elements are assigned managed object names within VSM, grouping objects into classes that share characteristics or
attributes. Managed objects (MOs) are instances of these object classes. The current state of each instance is stored within
a database. The Java Data Objects (JDO) architecture provides a transparent Java-centric view of persistent information to
application programmers. This paper explores some of the issues involved in providing a JDO interface to the managed object
data maintained by NETeXPERT. Such an interface provides an alternative route for the input or retrieval of managed object
data, and can support analysis tasks that might be di�cult to implement using the existing rules-processing framework.
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1. INTRODUCTION

A network consists of a variety of objects, called devices or network elements. The OSI NETeXPERT
VSM platform[OSI 2000a] refers to these devices as managed objects (MOs). An MO is any element in a
network capable of having a status or condition, typically managed by NETeXPERT VSM. Traditional net-
work devices include communications devices, switching equipment, computers and peripheral equipment,
bridges and routers, satellites and other network element management systems. Non-traditional network de-
vices include alarm systems, environmental controls, security devices, operators, and computer applications
software.

A basic building block of NETeXPERT VSM systems is the class. A class is a template for MOs,
delineating MOs that have the same properties. For example, the class equipment can contain a variety
of di↵erent devices. Each device in the class has a name, a location, an administrative state (locked or
unlocked), and an operational state (enabled, disabled, active, or busy). These properties are the class
attributes. Di↵erences in the values of these attributes distinguish individual MOs from one another. Classes
can be subdivided into more specific groups, i.e. VSM supports (single) inheritance.

An MO is manipulated by an IDEAS server[OSI 2000a] using code written in a simple rule-based scripting
language [OSI 2000b]. Although suitable for many event processing tasks, there are also cases where a more
powerful manipulation language might be desirable. Suppose a customer wished to develop a Java application
to manipulate managed objects. Such an application might be used for bulk object instance creation, report
writing, or more sophisticated data analysis for example. NETeXPERT stores the state of each managed
object in a relational database, e.g. Oracle. This presents the Java application developer with a number of
problems to be solved before an e↵ective application can be created.

The principal problem is that there is likely to be a considerable mismatch between the application model
and the database model provided by OSI. The application model will typically be specified in terms of Java
classes representing managed object classes, with their corresponding attributes and methods, and with Java
inheritance being used to model MO class inheritance. The relational model, as we will see in Section 2, uses
a more primitive representation with a single table for all attributes, irrespective of their type or the MO
to which they belong. Constructing a Java representation of an MO instance using such a representation
requires a non-trivial mapping.

An application-level query is likely to be expressed in terms of MO attributes and should return a collection
of matching objects. The scope of a query may well include an MO class and its subclasses. A relational
query must be written in terms of tables and columns and will return a set of matching rows. Given the
underlying database representation used by OSI, the mapping from application query to database query is
non-trivial, potentially involving complex joins.

Java developers typically use JDBC[2001] or SQLJ[1998] to interface to relational databases. Whilst
allowing an application to pass SQL statements to the database, such APIs do nothing to hide the relational
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nature of the database from the application. Clearly we need to create a mapping between the application
model and the relational model. If this was a one-o↵ problem then constructing such a mapping by hand
might be an acceptable solution. However, the mapping needs to be extended each time a new MO class is
defined. Furthermore, allowing user application code to directly manipulate the underlying database tables
is potentially error-prone. Ideally we would like to be able to construct this mapping automatically. Java
Data Objects (JDO) provides the basis for such a mechanism.

The Java Data Objects (JDO) specification[Russell et al. 2001] is a high level API that defines a standard
way for applications to store Java objects in transactional data stores. It allows users to specify their
application program logic and queries entirely in Java. Most importantly, it is not necessary for programmers
to explicitly fetch and store Java objects from a database: this is done automatically in JDO.

The JDO implementation hides all the details of the persistence mechanism from the application. Two
main interfaces are exposed to applications. The main interface for persistent-aware applications is the
PersistenceManager interface. A persistence manager is responsible for cache management and also pro-
vides services such as query management and transaction management. In JDO, objects that are to be
made persistent are called persistence-capable objects; they expose the PersistenceCapable interface to
applications. This provides services such as life cycle state management for persistence-capable classes. A
tool called an enhancer, provided by the JDO vendor, is used to modify the standard output of a Java
compiler to add an implementation of the PersistenceCapable interface to the specified classes.

Of course an application cannot be totally unaware of the persistent nature of the data it is manipulating.
Access to the data is typically made within the context of a transaction, and the application must also
explicitly indicate when an object instance should be made persistent or transient. A typical JDO application
starts by creating a PersistenceManager from a PersistenceManagerFactory.

PersistenceManagerFactory pmf = ...
// Initialize factory properties, e.g. database URL and user
PersistenceManager pm = pmf .getPersistenceManager();
Transaction txn = pm.currentTransaction();

Suppose we have a Person class, defined by

public class Person

{
public String name;
public Address address;
...

}

We can retrieve a persistent instance of this class, and alter it within the context of a transaction, using
code similar to the following:

txn.begin();
// perform query
Query query = pm.newQuery(Person.class, ”name == \”Fred\””);
Collection result = (Collection)query .execute();
Iterator iter = result.iterator();
// iterate over the results
while (iter.hasNext()) {

Person person = (Person)iter.next();
// traverse to the address object and update its value
person.address.street = ”1 Park Lane”;

}
txn.commit();

We can make a transient object persistent using the makePersistent method. The reverse operation,
making a persistent object transient, uses the deletePersistent method.
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Person p = new Person(...);
pm.makePersistent(p);
...
Person pp = ...
pm.deletePersistent(pp);

Section 7 gives some more examples of JDO code for manipulating NETeXPERT managed objects. Further
details of the JDO specification can be found in [Russell et al. 2001].

In all these examples note how the Java code is not polluted by any details of the object-relational mapping.
The compiled class file for each persistence-capable class is augmented with the necessary mapping code by
a vendor-provided enhancer application. But how does the enhancer know which fields to persist, or where
to store them? A JDO application defines which attributes of a class are persistent using an XML file with
the extension .jdo. You can provide such a file either for every persistence-capable class or for each package
containing such a class. These files define which fields should be persistent and which are transient. In the
case of a field representing a one-to-many or many-to-many relation additional information must also be
supplied defining the nature of this relationship. Here is an outline of the jdo file for our Person class:

<?xml version="1.0" encoding="UTF-8"?>
<jdo>
<package name="...">
<class name="Person" ...>
<field name="name" ... />
<field name="address" ... />

</class>
</package>

</jdo>

The *.jdo files tell the system what needs to be stored, but not where, or how, to store it. Even for a
simple example there are many database schemas that could be used to store the data. We could create one
table for each class, with a column for each attribute. This is conceptually simple, but is not e�cient when
the scope of a query includes subclasses. Or we might create one table for each class hierarchy, rolling each
subclass and its attributes into one table. This is e�cient for subclass queries, but can potentially result in
very wide tables.

Some JDO implementations assume that the database schema is under the control of the implementation.
The enhancer not only produces an updated class file but also the SQL code necessary to create the cor-
responding database tables. When an application has to work with existing data then such an approach is
clearly not appropriate. In such cases we need to use a JDO implementation that allows some configurability
in the mapping process. One of the ways in which JDO vendors di↵erentiate themselves is in the flexibility
of this mapping process.

Unfortunately none of the existing JDO implementations are su�ciently flexible to be able to cope with
the representation of managed objects used by OSI, as described in Sections 2 and 3. A specialized enhancer
could be developed with hard-wired knowledge of the OSI schema but that would require a non-trivial
investment of resources. One of the main aims of this report is to explore how one might bridge the
gap between the current database schema and existing JDO implementations. By judicious choice of JDO
implementation, coupled with extensive use of database views and triggers, we show how to construct a JDO
interface to the MO data. To illustrate this process a prototype has been developed that constructs a Java
class for each MO class and attribute type in an OSI database, together with the necessary configuration files
to drive a JDO enhancer. Of course such an implementation is unlikely to be as e�cient as a solution based
on a specialized enhancer, but it allows us to evaluate the utility of such an interface without committing
expensive resources.

The rest of the report is structured as follows. Section 2 describes the schema used to represent managed
objects in more detail. Section 3 then shows how the di↵erent attribute types are encoded in this schema.
A brief description of the JDO implementation used in our prototype then follows in Section 4. Section 5
describes how to bridge the gap between database schema and JDO using this implementation. Section 6
discusses some of the finer points of the prototype, and some examples are presented in Section 7. Finally,
the conclusions evaluate the utility of the prototype and contains suggestions for future work.
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CLASS NAMINGATTRIBUTE NAME TYPE ISAMGR PARENT
0 0 UNKNOWN 0 0
1 0 top Forum 0 0
3 1005 circuit Forum 0 1
4 1011 contact Forum 0 1
5 1013 customer Forum 0 1
6 1015 equipment Forum 0 1
...

35 1015 router 0 6

Fig. 1. Example CLASS table entries

2. THE OSI DATABASE SCHEMA

In this section we describe the tables used to represent managed object instances, classes, attributes and
their types. No attempt is made to give a complete description of these tables. Without access to OSI
design documents we have had to treat the OSI system as a black box, inferring the semantics of the fields
from examples of their use. Whilst su�cient for a prototype, clearly a production-quality implementation
would need access to a detailed specification of the schema. The database schema contains many tables
in addition to those required to store managed objects and we can (hopefully) safely ignore these. There
are ten tables that are of interest to us, CLASS, CLASSATTR, ATTRBUTE, ABSTRACTTYPE, RELATE, MO, MOATT,
MORELATE, MOM, and SURROGATE, and we describe each of these in turn.

2.1 CLASS

Every managed object class has a corresponding entry in the CLASS table. Each row contains, amongst other
things, the class name and its superclass.

Column Type
CLASS NUMBER(11)
NAMINGATTRIBUTE NUMBER(11)
NAME VARCHAR2(254)
TYPE VARCHAR2(10)
ISAMGR NUMBER(7)
PARENT NUMBER(11)

Every managed object class is derived, directly or indirectly, from the class “top” in this table. Unfortunately
this class itself is derived from the “UNKNOWN” class which has itself as the parent. This makes the relationship
between table rows and Java classes slightly more messy than it needs to be. Figure 1 contains a fragment
of a class table illustrating how the class router is a subclass of equipment, which is itself a subclass of
top.

2.2 CLASSATTR

The CLASS table defines the names, and inheritance hierarchy, of the classes but says nothing about the
attributes defined for each class. This information is provided by the CLASSATTR table.

Name Type
CLASS NUMBER(11)
ORDR NUMBER(7)
ATTRBUTE NUMBER(11)
RELATEDCLASS NUMBER(11)
RELATIONSHIP NUMBER(11)
MANDATORY NUMBER(7)
STATUS NUMBER(7)

For each class there will be a row in this table for every attribute associated with the class, excluding

inherited attributes. Figure 2 contains a fragment of a class attribute table. This example shows that the
class with key 3, which represents the circuit class in Figure 1, has three attributes with keys 1000, 1002
and 1001.
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CLASS ORDR ATTRBUTE RELATED RELATION MANDATORY STATUS
CLASS SHIP

3 1 1000 0 0 1 0
3 2 1002 0 0 1 0
3 3 1001 0 0 1 0
...

Fig. 2. Example CLASSATTR table entries

ATTRBUTE NAME TYPE DEFVALID
1000 administrativeState 105 949
1001 bandwidthType 106 null
1002 aEndpointName 5 0

...

Fig. 3. Example ATTRBUTE table entries

TYPE SEGMENT REFERENCE NOTATION
5 0 MO MO

105 0 administrativeStateEnum Enumerated{”locked”(0),. . .}
106 0 bandwidthTypeEnum Enumerated{”digital”(0),. . .}

...

Fig. 4. Example ABSTRACTTYPE table entries

2.3 ATTRBUTE

The CLASSATTR table defines which attributes are associated with which classes, but not what the attributes
themselves mean. In particular we need to know the name and type corresponding to each attribute key.
This information is provided by the ATTRBUTE table.

Name Type
ATTRBUTE NUMBER(11)
NAME VARCHAR2(254)
TYPE NUMBER(11)
DEFVALID NUMBER(11)

Figure 3 contains a fragment of an attribute table. This example shows that the three attributes associated
with the circuit class are called administrativeState, bandwidthType and aEndpointName, with types
whose keys are 105, 106 and 5 respectively.

2.4 ABSTRACTTYPE

Attributes in the NETeXPERT framework can have many di↵erent types. Some attributes hold primitive
values like integers and strings whilst others represent structured data such as sequences, disjoint unions
and records. The ABSTRACTTYPE table describes the types currently in use by attributes in the database.

Name Type
TYPE NUMBER(11)
SEGMENT NUMBER(7)
REFERENCE VARCHAR2(254)
NOTATION VARCHAR2(254)

The REFERENCE column contains the type’s name, whilst the NOTATION column defines its meaning. In the
case of a primitive type this is the same as the type name. But for other types the NOTATION column
describes how the type is constructed from more primitive elements. This column has a relatively limited
size and some complex types may have descriptions that exceed this limit. The SEGMENT column is used in
such cases to break the description into multiple segments, ordered by the index in this column. Figure 4
contains a fragment of a type table. This shows that the aEndPointName attribute contains a managed
object reference, whereas both the administrativeState and bandwidthType attributes have enumerated
types for their values. Section 3 discusses the NOTATION column in more detail.
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RELATE NAME ONAME GENERIC
0 NONE null 0
1 ConnectUp ConnectDown 1
2 ConnectDown ConnectUp 1
3 ContainedIn Contains 1
4 Contains ContainedIn 1
5 ManagedBy Manages 1
6 Manages ManagedBy 1
7 bsc site down bsc site up 0
8 bsc site up bsc site down 0
...

Fig. 5. Example RELATE table entries

MO CLASS NAME PARENT MOM REPORTEDAS
30 35 Switch DA SYB MO 0 0 null
31 36 EFDgeneral 0 0 null
90 43 2DOMCR1 TAIPEI2 408 0 null

...

Fig. 6. Example MO table entries

2.5 RELATE

The RELATE table keeps track of the di↵erent kinds of relationships defined between managed objects.

Name Type
RELATE NUMBER(11)
NAME VARCHAR2(30)
ONAME VARCHAR2(30)
GENERIC NUMBER(7)

The RELATE column contains the primary key for the table. Relationships are typically named in pairs,
corresponding to the two ends of the link. The NAME column contains the name of a relationship, whilst the
ONAME column contains the name for the opposite end of the link, as illustrated in Figure 5. The GENERIC
column seems to be set to 1 for the three built-in relations and 0 for everything else. The NETeXPERT
documentation states that relations should be defined in pairs. In the test database provided by OSI there
are some relations where this is not true. It is not clear whether this is an error, or whether it has semantic
significance.

2.6 MO

The tables discussed so far define the static state of the system, i.e. the classes, attributes and types used to
define managed objects. We now turn our attention to the representation of the instances of these classes.
The MO table contains a row for each such instance.

Name Type
MO NUMBER(11)
CLASS NUMBER(11)
NAME VARCHAR2(254)
PARENT NUMBER(11)
MOM NUMBER(11)
REPORTEDAS VARCHAR2(254)

Figure 6 contains a fragment of an MO table. Note that all managed objects, irrespective of the class to
which they belong, are stored in single table.

2.7 MOATT

The MO table defines which instances of which classes currently exist in the system, but does not define the
values of the attributes in these instances. This is the role of the MOATT table.
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MOID ATTRID COMPID STRVALUE ... LOWINT SYNTAX
VALUE

2 1000 unlocked 3
2 1012 0000000000 4 6
2 1026 active 3
2 1353 critical 3
3 1012 0000000000 4 6
3 1018 v-h-Coordinates 3
3 1019 10 12
3 1021 SQF 12
3 1023 2 4
3 1027 0000000000 123 George Street 12
3 1027 0000000001 Glasgow 12
5 1000 shuttingDown 3
5 1012 0000000000 4 6
5 1357 0 12
5 1357 1 Ascending 3
6 1000 unlocked 3
6 1012 0000000000 4 6
6 1015 Test 12
6 1022 3 6
6 1026 busy 3
6 1358 0.0000000001.0000000000 42 4
6 1358 0.0000000001.0000000002 43 4
6 1358 0.0000000002.0000000000 0 4
6 1358 1.0000000001.0 Fred Bloggs 12
6 1358 1.0000000001.1 0 1
6 1358 2 1.000000000000000e+00 9
6 1359 0000000000.0000000000 18 4
6 1359 0000000000.0000000001 181 4
6 1359 0000000002.0000000000 0 4
...

Fig. 7. Example MOATT table entries

Name Type
MOID NUMBER(11)
ATTRID NUMBER(11)
COMPID VARCHAR2(240)
STRVALUE VARCHAR2(254)
REALVALUE FLOAT(126)
HIGHINTVALUE NUMBER(11)
LOWINTVALUE NUMBER(11)
SYNTAX NUMBER(7)

Consider the case of a simple string attribute. There will be one row in this table for each instance of a
class containing this attribute. Each of these rows will contain the attribute value in the STRVALUE column,
with the REALVALUE, HIGHINTVALUE and LOWINVALUE columns being unused. The situation is more complex
in the case of an attribute with a structured type such as a sequence or record. In such a case there will
be one row for each leaf in the tree representing the structured object, with the COMPID column indicating
the path from the root to this leaf. This process is illustrated in Figure 7 which contains a fragment of an
MO attribute table. Section 3 describes the encoding of the COMPID column in more detail. At this point
it is su�cient to note that all attributes of all managed objects are held in a single table, and the values of
compound attributes are spread across multiple rows within the table. The di�culties involved in mapping
from the application model to the database model should start to become apparent.

2.8 MORELATE

The MORELATE table keeps track of the relationships between managed objects. Note that the ManagedBy
and ContainedIn information is also duplicated in the MO table, presumably for e�ciency reasons.
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Name Type
MO1 NUMBER(11)
PRIORITY1 NUMBER(7)
MO2 NUMBER(11)
PRIORITY2 NUMBER(7)
STRATEGY NUMBER(7)
KIND NUMBER(7)

The KIND column is a foreign key to the RELATE column of the RELATE table. It is not clear what the priority
and strategy columns are used for in this table. They appear to be always set to 0 in the test database.
When there is a relationship between managed objects A and B it can usually be specified in two di↵erent
ways as each NETeXPERT relation typically has an inverse. The test database doesn’t appear to use a
canonical form for expressing such relations. So to find out if A is “connected up” to B one may need to
check for rows corresponding to both (A,B) in the ConnectUp relation and (B,A) in the ConnectDown relation.

2.9 MOM

The MOM table contains a row for each managed object manager. 1 2

Name Type
MOM NUMBER(11)
TIMEZONE VARCHAR2(10)

2.10 SURROGATE

The SURROGATE table is used to allocate fresh keys for the various objects used in the system.

Name Type
TID NUMBER(11)
ID NUMBER(11)
LOCKING NUMBER(11)

The row with TID = 1 is used for managed object instances. A JDO implementation will need to use this
table to allocate fresh MO keys that do not clash with those generated by the IDEAS server.

3. OSI DATATYPE ENCODING

In this section we describe in more detail how datatypes are represented in the NOTATION column of the
ABSTRACTTYPE table, and how the corresponding values are stored within the MOATT table.

3.1 Primitive types

The VSM platform defines a number of primitive types, such as String, Boolean, Integer32, Integer64 and
MO, with the obvious semantics. They can be distinguished from other types in the database as the NOTATION
column just contains the name of the type in these cases. The STRVALUE, REALVALUE, HIGHINTVALUE or
LOWINVALUE column in the MOATT table contains the corresponding value depending on the type concerned.
In the case of 64-bit quantities the value is spread across the HIGHINTVALUE and LOWINVALUE columns.
Figure 8 summarizes these encodings.

3.2 Enumerations

An enumeration type, as illustrated in Figure 4, contains a string starting with “Enumerated{”. Following
this are the di↵erent cases in the enumeration, in the format "name"(n), followed by a terminating brace.
So a complete example, for the administrativeStateEnum type of Figure 4, would look like

Enumerated{"locked"(0),"unlocked"(1),"shuttingDown"(2)}

In the MOATT table the corresponding values are stored as strings rather than integers. So an instance of an
attribute of type administrativeStateEnum representing the unlocked state would contain “unlocked” in
the STRVALUE value rather than 1 in the LOWINTVALUE column.

1 This table also contains rows for objects that don’t correspond to managed object managers. It’s not clear what these
represent.
2The TIMEZONE column is always null in the sample database.
3In our sample database the REALVALUE column does not appear to be used for any values.
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Type Stored as Syntax
Null “Null” in STRVALUE column 7
Boolean 0 or 1 in LOWINTVALUE column (0 = false) 1
Integer32 Value in LOWINTVALUE column 4
UnsignedInteger32 Value in LOWINTVALUE column 13
Integer64 Value in HIGHINTVALUE and LOWINTVALUE columns 5
UnsignedInteger64 Value in HIGHINTVALUE and LOWINTVALUE columns 14
Real Value stored as string in STRVALUE column.3 9
String Value in STRVALUE column 12
OctetString Value in STRVALUE column in the form “0x6672656465...” 8
MO Managed object ID stored in LOWINTVALUE column 6

Fig. 8. Encoding of Primitive Types

3.3 Record types

For simplicity, consider the case of a record type, or sequence type in OSI terminology, RT containing two
fields, a and b. Furthermore, assume that field a has type String whilst field b has type Integer32. Such a
type would be represented in the ABSTRACTTYPE table by a row with REFERENCE set to RT and a NOTATION
column having the value

Sequence{a String,b Integer32}

An instance of this type can be viewed as a tree with two branches.

42"abc"

0 (a) 1 (b)

Each leaf in such a structured value is stored as a separate row in the MOATT table, with the path from
the root to the leaf stored in the corresponding COMPID column. For compactness, a positional index is used
instead of the field name. So in the case of an attribute of this type the COMPID column will contain 0 for
the String component and 1 for the Integer32 component. If a record has more than ten attributes then
the single digit indices are padded with a leading 0. Presumably a record type with more than a hundred
components would pad everything to three digits with leading zeros, and so on.

Now consider a slightly more complex case where the field types are themselves structured. The type

Sequence{f1 RT,f2 RT,f3 Integer32}

illustrates such a scenario. An instance of this type would look like

42"abc"
0 1

3"de"
0 1

17

0 1 2

An attribute with this type would require five rows to represent each instance, corresponding to the five
leaves in the tree. The row containing the value 42 would have the path 0.1 in the COMPID column.

The example illustrates one of the main problems in developing a JDO mapping for this schema. JDO
implementations typically map persistent classes to tables or views. Consider the problem of constructing a
view containing all instances of the RT type. Each row will contain columns for the a and b fields. Such rows
will have to be assembled by querying the MOATT table. But this table is indexed by attribute, not type,
and so we must examine the COMPID column to resolve which rows correspond to fields of the RT type. If
records were the only compound type then we could construct an auxiliary table to assist in this task. The
table would contain (type,attribute,component) triples, indicating in which attributes a given type could
be found, and the component id(s) associated with these occurrences. However, the COMPID component is
also used for arrays, choices, and the Any type. As we will see in the following sections, these uses greatly
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complicate the construction of such a view. Section 5.4 considers this problem in more detail, and describes
the solution adopted in the prototype implementation.

3.4 Arrays

Like records, arrays can also be viewed as trees where each branch is labelled with the array index. OSI
uses this approach with the minor wrinkle that each index is 0-padded to ten digits. The arrays can also be
sparse, i.e. the first index does not have to be 0000000000, and there may be “gaps” in the branch labels.
An array of RT types would be represented by a row in the ABSTRACTTYPE table with a NOTATION column
having the value

SequenceOf RT

An instance of this type would look like

42"abc"
0 1 0

3"de"
1

17"g"
10

0000000000
0000000001

0000000003

Note that finding all rows in the MOATT table corresponding to the b field of the RT class involves pattern
matching, rather than simple string matching, when instances of this type can be embedded inside arrays.

3.5 Type aliases

Sometimes it is convenient to create a type with exactly the same structure as an existing type. If the value
in the NOTATION column of an ABSTRACTTYPE row is equal to the name of an existing type then the type
introduced by this row is treated as a type alias. Such aliases introduce some interesting problems when
mapping abstract types to Java classes. These issues are discussed in Section 5.6.

3.6 Choice types

The NETeXPERT platform supports choice, or disjoint union, types. The type

Choice{anInt Integer32, aString String, aBool Boolean, anRT RT}

represents objects that can contain an integer, string, boolean or RT value. At any point in time such
an object can contain exactly one of these choices, but which one? The STRVALUE column provides this
information. An example will probably help here. Suppose an attribute with id 3036 has this choice type.
The MOATT table might contain the following rows to represent an instance of this attribute.

MOID ATTRID COMPID STRVALUE LOWINTVALUE
659 3036 3
659 3036 3.0 abc
659 3036 3.1 42

This example represents an instance of the choice type holding an RT value. The value 3 in the first row
indicates the value contains the fourth choice, 0-based, and the next two rows describe the RT value.

3.7 The Any type

The NETeXPERT system supports an Any type. An attribute of this type can store any value of any type.
We can also build sequences of Any types to store heterogeneous collections, and store such types as record
components. The STRVALUE column indicates the type of the associated value. The type name is embedded
inside “0<. . .>” brackets, as illustrated in the following example.

MOID ATTRID COMPID STRVALUE LOWINTVALUE
659 3037 0<RT>
659 3037 0<RT>.0 abc
659 3037 0<RT>.1 42
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3.8 Relationships

Relations are probably the most complex aspect of the OSI schema. Part of the complexity is due to the
inherent power of associations. The relational features of the system have also evolved over time, leading
to some unnecessary semantic complexity, ambiguity, and duplication of e↵ort. In this section we try to
present a reconstruction of these aspects of the system. However, given the di�culties already mentioned,
it is di�cult to be completely sure that this account faithfully describes how relations are supposed to work
in the current system.

A non-zero RELATEDCLASS value in the CLASSATTR table is used for two distinct purposes. If the corre-
sponding RELATIONSHIP column is zero, indicating no relationship, then the value constrains the type of
the associated attribute. For example, suppose the attribute type was MO, but the RELATEDCLASS entry
contained (the key for) the equipment class. All instances of the attribute for this particular class would
then be restricted to equipment values. This mechanism illustrates some of the tension between attribute
types and managed object types within IDEAS. Although types can contain managed object references,
they cannot limit the type to a particular MO subclass. The RELATEDCLASS mechanism provides a simple
way of achieving such constraints, but only for attributes of type MO and SequenceOfMO. Curiously, the test
database contains non-zero RelatedClass entries for record types containing no managed objects. It doesn’t
appear to be possible to construct such examples using the current NETeXPERT GUI and so we assume
such entries are historical relics. The system defines an UNKNOWN managed object class, with a key of 0, from
which all other classes inherit. The test database contains examples of attributes of type SequenceOfMO,
with a type constraint, where instances of the attribute contain UNKNOWN objects. It is not clear whether such
occurrences are intentional, requiring special treatment of the UNKNOWN class when enforcing type constraints,
or whether this is another example of legacy data.

Now consider the more interesting case where the RELATIONSHIP column contains a non-zero value. Re-
lations in NETeXPERT provide a way of creating associations between managed objects. This is best
illustrated with an example. We assume the RELATE table has been populated with two relations, mangles
and its inverse, mangledBy. The relations can be thought of as roles on associations, using UML terminology
[Booch et al. 1999].

MO MO
mangles mangledBy

Note that at this stage the classes that can participate in this association have not been specified. The
multiplicity of the roles is also unknown. Can an object be mangled by many other objects, or at most
one? Can an object be responsible for mangling many di↵erent objects? A particular use of this association
might relate developers and applications, as in

Developer Applicationmangles mangledBy
* 0..1

This diagram represents the situation where a developer can mangle at most one application, and an ap-
plication can be mangled by zero or more developers. How do such instantiations of an association get
established in the NETeXPERT framework? And how do individual objects get related?

When defining a class attribute you can associate a relation with it using the RELATIONSHIP column.
For example, a Developer class might contain an attribute called MangledApp coupled with the mangles
relation. Suppose this attribute was of type MO. Given an instance of this class, D, then you could add a
row to the MORELATE table, associating a managed object M with D using relation mangles by assigning
M to the MangledApp attribute. Furthermore, if this class attribute also had the RELATEDCLASS column
set to Application then this would restrict M to be an instance of this class. Note that the name of the
class attribute plays a relatively unimportant part in this process. IDEAS uses the relation name, not the
attribute name, to perform queries on the association. The main purpose of the attribute is to indicate
that the class plays a particular role in the specified association. The type of the attribute also gives some
indication of the intended multiplicity of the opposite role. For example, if the type of MangledApp is MO
then this suggests that the multiplicity of mangles is 0..1.

Although not essential, the association can also be populated from the reverse direction given a suit-
able attribute definition. For example, the Application class could have a Manglers attribute, of type
SequenceOfMO, associated with relation mangledBy and with a related class of Developer. This would allow
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a sequence of mangling developers to be associated with an application by assigning them to this attribute.
Furthermore, this attribute gives a hint that the multiplicity of the mangledBy role is *.

Given a Developer object D and an Application object A, they can be related by the mangles-mangledBy
association in one of two equivalent ways. We could state that D mangles A or that A is mangled by D.
These would be represented by one of two di↵erent rows in the MORELATE table.

MO1 MO2 KIND ...
D A mangles
A D mangledBy

Which row is used to represent this association depends on the attribute used to create it. This implies
that when determining which developers are responsible for mangling an application we must check rows
corresponding to both directions of the association.

At first glance, it would appear that the attributes defined for the Developer and Application classes
capture the spirit of our earlier diagram. But this impression is perhaps misleading. A developer can only
mangle one application at a time when using the MangledApp attribute. But we cannot enforce this multi-
plicity as there is nothing stopping multiple applications blaming the same developer using the Manglers
attribute. What about the type of the related objects? Consider a third class, Router, that also contains
a Manglers attribute with the same properties as the Application version. If R is an instance of this
class then it can use the Manglers attribute to create an association with D. From the perspective of
the Developer class it is tempting to think that developers can only be accused of mangling applications.
However, when querying the association developers may discover they have mangled routers as well.

The use of special attributes to populate the associations raises some additional issues. Should such
attributes be viewed as write-only? If they can be read then what value should be returned, bearing in mind
that the association can also be populated from the other end? In particular, what value should be returned
for an attribute of MO type if it is related to multiple objects? The current NETeXPERT GUI appears to
make no use of the converse relation when displaying such attributes. For example, if application A adds
developer D to the Manglers attribute then the MangledApp attribute of D will not record this fact. In the
light of this they should probably be considered as write-only attributes. Other interesting scenarios occur
when a class has two attributes connected to the same relation, perhaps with di↵erent types.

The Manages and Contains relations, and their inverses, are treated specially by the system. The PARENT
and MOM columns of the MO table encode these relations in addition to the usual entries in the MORELATE
table. Any changes to these relations must therefore be made in two separate places. The NETeXPERT GUI
does not allow attributes to be associated with these relations, simplifying this task. Other non-standard
features include relational attributes of type SequenceOfMO where there are entries in the MORELATE and
MOATT tables.

3.9 Object creation

Objects are created in the NETeXPERT system via the netx createmo stored procedure.

PROCEDURE netx createmo (
mo in IN INTEGER, name in IN VARCHAR2,
xclass in IN INTEGER, parent in IN INTEGER,
mom in IN INTEGER, repas in IN VARCHAR2,
namingatt in IN INTEGER, isamom in IN INTEGER,
retkey out OUT INTEGER, retval out OUT INTEGER )

The parameter mo in contains the key for the new object. The value 0 indicates the procedure itself should
generate a new key. The chosen key is returned via the retkey out parameter. Every managed object
must have a unique name and this is specified using the name in parameter. The class of managed object is
specified using xclass in, where the value is used as a key into the CLASS table. If parent in 6= 0 then this
value indicates the parent of the new node in the ContainedIn relationship. Similarly a non-zero value for
the mom in parameter is used to populate the ManagedBy relationship. The repas in parameter initializes
the REPORTEDAS column in the new row. If isamom in is non-zero then a row for the new object is added
to the MOM table. The success, or otherwise, of the call is returned in the retval out parameter, with 0
indicating success.

The netx deletemo procedure can be used to delete managed objects.
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PROCEDURE netx deletemo (
mo in IN INTEGER, retval out OUT INTEGER )

4. THE INTELLIBO JDO IMPLEMENTATION

There are numerous JDO implementations available, LiDO from LIBeLIS, Kodo from TechTrader, OpenFu-
sion from PrismTech, and intelliBO from SignSoft being just some of them. Although the JDO specification
defines how user code interacts with JDO objects, the details of how such objects are mapped to a relational
database are left deliberately vague. This allows plenty of scope for di↵erent JDO vendors to di↵erentiate
their products. Some vendors concentrate on providing support for applications that place no constraints
on the underlying database schemas. Such applications use the database to store persistent Java objects
but have no need to access legacy data. A JDO implementation targeted at such a market is free to choose
whatever database schema best suits the Java classes being persisted. The details of the mapping from Java
class to database table may be of no concern to such an application developer.

Another class of application requires access to legacy data, with JDO objects providing a convenient wrap-
per around this data. In such cases the database schema will have been fixed in advance, and the developer
needs to explicitly provide mapping information from database tables to JDO classes. The expressiveness
of the mapping “language” di↵erentiates JDO implementations.

One area in which JDO implementations can significantly di↵er is in their support for inheritance. Indeed
some JDO implementations don’t support inheritance at all. Amongst those that do there is still plenty of
scope for di↵erent representation choices:

— An implementation could create one table for each class, with a column for each attribute. This is
conceptually simple, but is not e�cient when the scope of a query includes subclasses.

— Another strategy is to create one table for each class hierarchy, rolling each subclass and its attributes
into one table. This is e�cient for subclass queries, but can potentially result in very wide tables.

— An implementation could also create one table for each class, with a column for each attribute directly
defined on this class. Inherited attributes are retrieved from the tables corresponding to the classes in which
the attributes are defined.

— Another option is possible when a particular pattern of use can be identified and this is to map a set
of classes into one table. This enables queries to be optimized for particular combinations of objects.

The eventual aim of most JDO implementations is to support a variety of inheritance mapping schemes, but
at the time of writing every JDO implementation investigated only supports at most one such scheme.

Given our need to interface to legacy data, we clearly need to choose a JDO implementation that allows
the developer to specify explicit mapping information. Furthermore, given the particular schema we have
to use, we would like the mapping facilities to be as expressive as possible. Every managed object class
is derived from the top class, and so using an encoding of persistence that requires a table for each class
hierarchy will lead to a single table with as many columns as there are attributes in the system. We could
trim o↵ this “top” type, losing the ability to iterate over all managed objects. But a better alternative
would be to use an implementation that handles inheritance via a table for each class. SignSoft’s intelliBO
product is an example of such an implementation. Although the prototype makes use of some features
specific to intelliBO, as the JDO market matures it seems likely that an interface to NETeXPERT could be
based on other implementations with little di�culty.

In the sections that follow we describe some of the distinctive features of the intelliBO implementation.
However, the reader is directed to [Signsoft 2001] for full details of this product.

4.1 SJDO Files

The JDO files describe which object attributes should be treated persistently. They also define which of
these attributes should be fetched when the object is initially loaded, and which should be loaded lazily.
Attributes can contain (references to) other objects. Without such control over the loading strategy we may
end up fetching the whole world as a result of loading a single object. The mechanism for specifying how
to map these objects to database tables is vendor-specific. The JDO specification defines an element that
can be used for vendor attributes. However, Signsoft has chosen to specify the mapping details in separate
SJDO files to avoid polluting the JDO files. The SJDO file corresponding to the JDO file from Section 1
would look like this:

<?xml version="1.0" encoding="UTF-8"?>
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<sjdo>
<package name="...">
<class name="Person" ...>
<field name="name">
<field-mapping table="TPERSON" field="FNAME">

</field>
...

</class>
</package>

</sjdo>

This configuration file states that the value of the name attribute of the class Person can be found in column
FNAME of the TPERSON table. Each persistent non-relational attribute of the class would have a similar
<field> entry in this file.

4.2 Relations

One of the more powerful features of the JDO specification is its support for relations. Many objects have
attributes that refer to other objects, forming a complex mesh of relationships. A persistence mechanism
should support such relationships in a transparent fashion, silently and lazily loading objects as relationship
links are traversed.

Sometimes there is a one-to-one relation between objects. A person, for example, can have an address.
Instead of adding the address attributes into the person they can be separated into an address class. The
class Person then contains exactly one reference to an object of class Address. The addr attribute of the
Person class would then have an SJDO entry that specified which column in the TPERSON table contained
the foreign key of the address, and which table to use to find the address object corresponding to this key.

<field name="addr">
<one-to-one-mapping>
<simple-ref
from-table="TPERSON"
from-field="FADDRKEY"
to-table="TADDRESS"
to-field="FKEY"/>

<element-type>
Address

</element-type>
</one-to-one-mapping>

</field>

Suppose we wish to associate many addresses with a single person. This is an example of a one-to-many
relationship. In this case the addr attribute would represent a collection of addresses, and have a type such
as List. The JDO file would specify the type of the elements within this collection.

<field name="addr">
<collection element-type="Address"/>

</field>

The corresponding SJDO file defines what collection type to use to hold the addresses, and the mapping
between the TPERSON and TADDRESS tables as in the one-to-one case.

<field name="addr">
<one-to-many-mapping>
<simple-ref
from-table="TPERSON"
from-field="FADDRKEY"
to-table="TADDRESS"
to-field="FKEY"/>

<result-type>
java.util.ArrayList
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</result-type>
</one-to-many-mapping>

</field>

Finally, consider the situation where we wish to assign any number of addresses to a person, and any
number of persons to an address. Such a relation typically involves the use of an auxiliary table that relates
rows in the TPERSON and TADDRESS tables. Such many-to-many relations can also be specified in the SJDO
file. The reader is referred to [Signsoft 2001] for further details of the relationship mapping process.

4.3 Inheritance

The JDO specification allows a persistent-capable class to specify the name of its persistent-capable super-
class, if any, in the JDO file. How the fields of such classes are mapped to table columns is left to the imple-
mentation. We have already mentioned how intelliBO stores the attributes for each class in a separate table.
The relationships between the tables has to be defined in the SJDO file, using a <superclass-mapping>
element, e.g.

<superclass-mapping>
<simple-ref from-table="JDO MO"

from-field="MO"
to-table="JDO EQUIPMENT"
to-field="MOID"/>

</superclass-mapping>

This is not su�cient, however. To support polymorphic references the system needs to be able to de-
termine, e�ciently, the Java class corresponding to each row in such a table. To enable this the system
requires a class-type element in the least derived persistence capable class indicating which column in the
corresponding table contains the class name for this object, e.g.

<class name="MO">
<class-type table="JDO MO" field="TYPE"/>
...

The TYPE column in this example should contain the fully qualified Java class name, excluding the file
extension.

4.4 Exchange Operators

In some cases the natural representation of a class attribute is very di↵erent to the column type of the
database table. A good example is the treatment of enumerated types in NETeXPERT. They are stored
as strings within the database, but it may be more natural to map these to elements of enumerated type
classes. To deal with such issues intelliBO introduces exchange operators. These are classes that implement
the ExchangeOperation interface.

public interface com.signsoft.ibo.jdbc.ExchangeOperation {
// Initializes the exchange operation.

void init(java.util.Properties p)
// Intercepts a database read field call.

Object fromDatabase(Object o)
// Intercepts a database write field call.

Object toDatabase(Object o)
}

An exchange operator can be set on a per-attribute basis. The toDatabase and fromDatabase methods
are used to convert the data on the way to and from the database. The SJDO file indicates which fields
have exchange operators associated with them, and the parameters to pass to the init method where
applicable. For example, an administrativeState attribute in an equipment class might contain an SJDO
entry similar to the following

<field name="administrativeState">
<field-mapping table="JDO_EQUIPMENT"

field="ADMINISTRATIVESTATE"/>
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<exchange-operation
class-name="administrativeStateEnum$ExchangeOperation">

</exchange-operation>
</field>

The current implementation of exchange operators in intelliBO is flawed in one respect. The query language
is not aware of their presence, and so queries involving attributes on which query operators are defined do
not work properly at present.

4.5 Key Generation

Every managed object in the OSI database must have a unique key. Consider the scenario where the IDEAS
server and a JDO implementation are both trying to create objects. The JDO code might look like the
following:

tx.begin();
equipment e = new equipment(...);
pm.makePersistent(e);
tx.commit();

At what point is a new key allocated for this object, and how do we ensure it doesn’t conflict with a key
allocated by the IDEAS server or another JDO-based application? One approach involves the user simply
assigning values to an object’s primary key attributes prior to persisting the object. But this just pushes the
problem onto the user. A JDO implementation can also be configured to automatically generate a primary
key at the time a persistent object is first committed. This usually involves using a database table to record
a “high-water” mark for allocated keys. The OSI system uses the SURROGATE table for this purpose. To
allow the JDO and OSI implementations to coexist peacefully, it is important that they both use the same
mechanism and database table. Fortunately the intelliBO system allows the details of the key generation
mechanism to be parameterized by the user. The following element, when included in the JDO entry for a
base class, tells the JDO system to use the SURROGATE table to allocate managed object keys.

<key-generator
class-name="com.signsoft.ibo.jdbc.key.SequenceTable">

<param key="table-name" value="SURROGATE"/>
<param key="id-field" value="ID"/>
<param key="name-field" value="TID"/>
<param key="new-connection" value="false"/>
<param key="pre-allocation-size" value="1"/>
<param key="sequence-name" value="1"/>
<param key="field-name" value="id"/>

</key-generator>

For applications where a lot of objects are created, for example a bulk importer, the pre-allocation-size
entry should be increased to avoid accessing this table for every created instance.

4.6 The Connection Object

For reasons that will become clearer in Section 5.4, sometimes it is convenient to be able to escape from
the confines of JDO and use raw JDBC calls. However, it is important that such calls take place within
the same transaction as the JDO code. To achieve this requires access to the java.sql.Connection object
being used by the JDO system for the current transaction. Unfortunately the JDO specification does not
prescribe any standard mechanism for accessing this object. Indeed for some JDO implementations such an
object may not even exist. Fortunately the intelliBO system does allow access to the underlying connection
object via the following code sequence.4

com.signsoft.ibo.jdbc.rm.ResourceManager rm =
((com.signsoft.ibo.jdbc.JDBCPersistenceManager)pm).currentResourceManager();

java.sql.Connection con =
rm.getConnection(rm.DEFAULT_DATA_SOURCE_NAME, pm);

4This feature is not publicly documented, and the details may alter in the future.
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4.7 SQL Queries

The JDO standard defines JDOQL as a query language. This language allows queries to be expressed using
Java field names and expression syntax. In some cases it can be convenient, and much more e�cient, to
express queries using native SQL syntax. IntelliBO supports such queries and Section 5.10 describes how
this feature is used to implement relations in the OSI2JDO translator. The general idea is quite simple. A
query is constructed using a SQL expression as filter, together with an additional parameter indicating that
this filter is written in SQL, rather than JDOQL. However, there are various additional constraints on the
form of this filter, primarily to ensure that the corresponding result set contains enough details to allow the
persistent objects to be constructed. In particular, all fields of the default fetch group should be part of the
result set, as otherwise these attributes will never be retrieved.

5. BRIDGING THE GAP

5.1 MO classes

We would like to model each managed object class by an equivalent JDO class. Generating a Java class
definition for each MO class is fairly straightforward. But to make such a definition into a JDO class requires
us to generate JDO and SJDO mapping files as well. These, in turn, require us to specify which table holds
the data for each MO class. For example, suppose we constructed the MO and equipment classes from the
managed object database:

public class MO {
public int id;
public String name;
...

}

public class equipment extends MO {
public administrativeStateEnum administrativeState;
public location locationName;
public operationalStateEnum operationalState;
...

}

To add JDO support to such classes we would need tables of the form

JDO MO “Table”

MO CLASS NAME PARENT MOM . . . TYPE

87 41 XC1000-1 0 0 OsiDemo.XC1000
89 41 DFW XC1000 0 0 OsiDemo.XC1000

and
JDO EQUIPMENT “Table”

MO ADMINISTRATIVE EQUIPMENTID LOCATION OPERATIONAL
STATE NAME STATE

87 unlocked XC1000-1 394 enabled
89 unlocked DFW XC1000 392 enabled

Unfortunately the data for every class is distributed amongst the MO and MOATT classes. However, a view
behaves in many respects like a table, and so we can satisfy the JDO requirements by defining a suitable
database view for each MO class. Inheritance complicates the situation slightly. For example, in the
JDO EQUIPMENT view we must include a row for every object of the equipment class. But we must also
include rows for managed objects whose classes are derived from this class. Fortunately, Oracle’s connect
by clause provides a simple mechanism to express this requirement. The JDO EQUIPMENT view could be
defined by a statement similar to the following:

create or replace view JDO_EQUIPMENT as
select MO.MO MOID,

StrValue(MO.MO, 1000) ADMINISTRATIVESTATE,
LowIntValue(MO.MO, 1022) LOCATIONNAME,
StrValue(MO.MO, 1026) OPERATIONALSTATE

Agilent Restricted Agilent Technical Report, No. AGL-2002-2, June 2002.



18 · Kevin Mitchell

from MO
where MO.CLASS in (select CLASS from CLASS

start with CLASS = 6 // The equipment class

connect by PARENT = PRIOR CLASS
);

Note that the view only contains columns for the non-structured attributes declared in this class; the other
attributes are handled outside the JDO world for reasons that will be explained shortly. The StrValue and
LowIntValue are helper functions. The expression StrValue(MO.MO, 1000) retrieves a row from the MOATT
table where the MOID column has the value MO.MO, the ATTRID column has the value 1000, and the COMPID
column is NULL. If such a row exists then the value of the STRVALUE is returned; otherwise the function
returns NULL. The other helper functions have a similar semantics, each returning a di↵erent column in the
row.

The JDO implementation is quite happy to treat a view as if it were a table. For row retrieval this is just
what we want. However, the JDO code will also try to insert, modify and remove rows from the view as if it
was a table as well, and this will fail unless we supply the appropriate triggers to redirect these operations
to the underlying tables. We return to this issue in Section 5.9.

The table, or view, used for the base of an inheritance hierarchy must contain a column indicating the
Java class to use for each instance. The MO table does not contain such a column and so we must create a
view that does. To do this we make use of an auxiliary table, JDO CLASSTYPE that is constructed during
the translation process. This table contains a map from class keys to fully qualified Java class names. The
JDO MO view can then be defined by

create or replace view JDO_MO as
select MO.MO MO,

MO.CLASS CLASS,
MO.NAME NAME,
DECODE(MO.PARENT, 0, NULL, MO.PARENT) PARENT,
DECODE(MO.MOM, 0, NULL, MO.MOM) MOM,
MO.REPORTEDAS REPORTEDAS,
JDO_CLASSTYPE.TYPE TYPE

from MO, JDO_CLASSTYPE
where MO.CLASS = JDO_CLASSTYPE.CLASS;

One slight drawback of this approach is that the package name used in the translation process is now
embedded in the database, preventing two separate uses of the tool targeting di↵erent package hierarchies.

5.2 Simple attributes

There is a direct mapping between most simple attributes and their representation in the corresponding Java
classes. For example, if an MO class has an attribute of type String then you would expect the constructed
Java class to have a field with the same name, also of type String. In some cases it is more natural and
convenient to rename some of the types. For example, an attribute of type Integer32 is mapped to a field
with type Integer. This avoids creating unnecessary classes and lots of tedious conversions. Java does not
have any unsigned types, and so the conversion process creates UnsignedInteger32 and UnsignedInteger64
classes to represent attributes with these types.

The enhancement process a↵ects how attributes are manipulated in the Java classes. Consider a simple
attribute attr of type Integer. Prior to enhancement the attribute can be manipulated just like any other
non-persistent attribute. However, clearly some magic must take place whenever such a field is accessed, for
example to retrieve the value from the database, or mark the field when its value is changed so the new value
is saved on a commit. The enhancement process defines “hidden” getter and setter methods for each such
attribute, and it is these methods that are responsible for the magic. To ensure that no code can bypass
these methods, which would be disastrous, the attributes themselves are changed to private scope. Any
direct field accesses in the code being enhanced are replaced by calls to the corresponding getter and setter
methods.

Any user code directly accessing the attr field would fail to work when using the enhanced version of
the class as this field would now be private. The user code could also be enhanced, and this would fix the
problem by replacing the direct field accesses by calls to the mediating methods. But this is a relatively
tedious and time-consuming process. An alternative strategy defines public getter and setter methods in
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the class, making the attributes private. Such encapsulation is often encouraged anyway, but in this case
it has the additional advantage of isolating the user’s code from the enhancement process. The prototype
translator adopts this strategy.

The CLASSATTR table contains a MANDATORY column which indicates which attributes must be specified
for an instance of the class, and which are optional. This property a↵ects the mapping in two ways. First,
we must ensure that any change to a mandatory attribute does not replace it by a “null” value. The
setter methods perform this check for mandatory arguments. The constructor for the class also takes the
mandatory arguments as parameters to ensure that they are initialized correctly. A mandatory attribute
can also be represented by a simpler type in some cases. Consider an attribute of type Integer32. As
mentioned above, this would normally be mapped to a field of type Integer to allow for null values. But if
this attribute is mandatory for a class then we can map the attribute to an int which is more e�cient and
convenient to use.

5.3 Enumerations

Consider a type such as

AdministrativeState =
Enumerated{"locked"(0),"unlocked"(1),"shuttingDown"(2)}

As described in Section 3.2, values of this type are stored in the database as strings. For each such type we
need to define a corresponding Java class. For e�ciency reasons we would like to ensure there is exactly one
instance of this type for each enumeration value. A combination of constructor hiding and the provision of a
readResolve method ensures this. For each enumeration class we also provide an ExchangeOperation class
which is used to convert to and from the underlying database representation. So the AdministrativeState
type would be converted into a Java class similar to the following.

public final class AdministrativeState
implements java.io.Externalizable {

private int value;

private AdministrativeState(int value) { this.value = value; }
private AdministrativeState() {} // Required for externalization

public static final AdministrativeState locked
= new AdministrativeState(0);

public static final AdministrativeState unlocked
= new AdministrativeState(1);

public static final AdministrativeState shuttingDown
= new AdministrativeState(2);

public static AdministrativeState get(int value) {
switch(value) {
case 0: return locked;
case 1: return unlocked;
case 2: return shuttingDown;
default:
throw new IllegalArgumentException();

}
}

private Object readResolve() { return get(value); }
...
public static class ExchangeOperation
implements com.signsoft.ibo.jdbc.ExchangeOperation {
...

}
}
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Any attribute with this type would have an <exchange-operation> element in the SJDO file containing
this attribute.

5.4 Record types

The cases considered so far both have the property that an attribute can be modeled by a single row in the
MOATT table. A Java developer will expect the type RT, from Section 3.3, to be modeled as a class. The
JDO Object Model distinguishes between first and second class objects. A first class object is a persistence-
capable class that has JDO identity, i.e. it has some form of key to identify each instance. A second class

object does not have its own JDO identifier and therefore cannot be referenced by multiple objects in the
data store; it is always associated with a first class object. Second class objects are stored as values along
with the first class object that refers to them. Second class objects must track changes to themselves and
notify their first class object that they have been changed so that their new state gets propagated back to
the database. This is done by calling the method jdoMakeDirty on the first class object.

This raises the question of whether types such as RT should be modeled by first or second class objects.
As the attribute values cannot be shared between MO instances, this suggests they could be modeled most
e�ciently by second class objects. The main drawback of this decision would be the requirement to call
jdoMakeDirty whenever they were altered.5

Irrespective of whether a type such as RT is implemented using first or second class JDO objects, the
mapping function will require us to specify a table, or view, containing instances of this type. But how
many RT instances are there in a database? Note that the MOATT table does not have a TYPE column. So to
find all the rows containing a string representing field a of an instance of the RT type involves a non-trivial
query. One strategy involves constructing an auxiliary table recording which attributes each structured
type occurs in, and the COMPID prefix of each occurrence. In the case of simple record types such a table is
straightforward to construct, containing entries like

ATTRID TYPEID COMPID PREFIX
1008 104
2916 389 3.
2996 781 0.0.

Unfortunately, such types can also occur inside arrays, where the COMPID prefix cannot be determined
statically. In such cases we could resort to pattern matching, with entries such as

ATTRID TYPEID COMPID PREFIX
... ... ...
2999 785 .
2999 101 .0.

where “ ” represents any digit. The situation becomes even more complex, and ine�cient, when Any types
are considered. An initial version of the prototype explored this route, with views using stored procedures
to perform the pattern matching. However, the resulting views were very ine�cient and complex, and it
was di�cult to see how such an approach would lead to a viable implementation.

What other options are open to use? There are clearly ways in which the database tables could be altered
to simplify our task. The MOATT table could include a TYPEID column for example. Or this table could be
split into multiple tables in various ways. But all these require changes to the NETeXPERT software, in
some cases of a non-trivial nature. Although perhaps worth considering in the longer term, a less obtrusive
approach was required for the prototype.

One possibility is to build such attributes ourselves from the raw data in the MOATT table. Obviously
such attributes would no longer be directly under the control of JDO, and so couldn’t be used in JDO
queries for example. But we could still tie them into the JDO transaction mechanism, so for the most part
users would be unaware of their di↵erent status, viewing them just like second-class JDO objects.

There are many ways of building attribute values from the MOATT rows.

(1) For each structured attribute we could define a persistent field containing the collection of MOATT rows
representing this attribute. If this field was in the default fetch group them the jdoPostLoad method
could construct the attribute value. Otherwise the code to assemble the value would be encapsulated
inside the getter method for the attribute. This strategy is likely to require making separate database

5Unfortunately many JDO implementations only support first class objects at the present time.
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queries for each attribute. Furthermore, we will need to sort the MOATT collection as there is no standard
mechanism to order a 1-N relation in JDO, unlike the situation for JDO queries.

(2) We could have a single persistent field holding the MOATT rows for all the structured attributes of this
object. This would avoid repeated database queries, and we could still assemble the individual attribute
values lazily. However the initial fetch may be quite expensive and require fetching many rows that are
never used.

(3) We could perform a separate JDO query in the jdoPostLoad method to load in all the MOATT rows and
assemble the structured attribute values. In this approach JDO is completely unaware of the structured
attribute fields.

Each of these strategies implies a corresponding action to be performed when committing an object
containing structured attributes. The jdoPreStore method can be used to make the required alterations.
Unfortunately the JDO specification does not specify clearly what operations are allowed to take place
during a jdoPreStore method. For example, to what extent is the method allowed to alter the database?
This makes it di�cult to write code that doesn’t accidentally exploit the implementation behaviour of a
particular JDO implementation. A further disadvantage of each of these approaches is that they treat the
MOATT rows as first-class JDO objects. Maintaining the identity of these objects, with the caching this
entails, is likely to be quite expensive. As we are not really exploiting the “first-class” properties for these
objects, a lighter weight alternative seems preferable. A more primitive interface such as JDBC would seem
ideal for this purpose as long as it could be used within the same transactional context as the JDO session.

As described in Section 4.6, the intelliBO implementation exposes the current database connection via
a private interface. We can use this to load the MOATT rows for an object without incurring the overhead
of making each row a first-class JDO object. We still have to decide on when such rows are loaded and
saved. The strategy adopted in the prototype is to load each attribute lazily. The first time a structured
attribute is referenced, via its getter method, the system uses JDBC to load the corresponding rows from
the MOATT table. These are then assembled into a structured value, cached, and the value returned to the
caller. When an object is being saved to the database, the jdoPreStore method uses JDBC to save the
rows corresponding to any altered structured attributes. The jdoMakeDirty method cannot be used to
mark such a “second-class” object as being dirty as the JDO implementation is unaware of these attributes.
However, the setter methods set the dirty bit for such attributes, and a “no-op” setter call will be su�cient
to mark the attribute as dirty.

Each class representing a structured attribute type implements jdoLoadType and jdoStoreType methods.
The jdoLoadType static method can be used to create an instance of the class from a JDBC result set
containing the MOATT rows representing this value. The jdoStoreType uses a prepared statement to batch
up and add the appropriate rows to the MOATT table. The jdoPreStore callback is responsible for calling
jdoStoreType on every attribute that has been marked as dirty.

In some cases a caller may know, in advance, that the values for a collection of structured attributes may
all be required. It may be more e�cient to load all the rows for these attributes in a single database query,
rather than loading them incrementally as each attribute is referenced. The prototype implementation
provides a simple mechanism for pre-fetching a set of attributes. This acts as a “no-op” semantically, but
may improve the e�ciency of the application in some cases.

The asymmetry between the treatment of structured and unstructured attributes is regrettable, but
perhaps unavoidable. Even if we could represent the structured attributes by second class objects then we
would still have to inform a first class object whenever an embedded second-class object changed. In most
situations the fact that some objects are under the direct control of JDO whereas other objects are only
indirectly controlled by it should not be noticeable.

5.5 Arrays

Once we have made the choice about how to process structured attributes then arrays are fairly straightfor-
ward. We just need to decide on the Java representation for them. As they are a) sparse and b) of varying
size, this suggests that a representation based on a map may be appropriate. We construct a separate class
for each sequence type rather than just using something like TreeMap. This preserves more type information
at the expense of additional classes.

The prototype implementation treats arrays atomically. Any change to an array element requires the
whole array to be written back to the database. For many arrays this is probably adequate. However, for
large arrays a more incremental approach could be developed. Similarly for large dense arrays we might be
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better o↵ using a vector. There are clearly many trade-o↵s here, depending on the type of the array and
its particular usage pattern. Ultimately such implementation choices will need to be guided by the user,
perhaps by using XML configuration files to guide the translation process.

Sometimes arrays are used to represent sets. For example, an equipment class might contain an attribute
contactNames of type SequenceOfMO. Suppose we could be sure that the order of the contacts in this
sequence was of no importance, i.e. the user just wanted to associate a set of contacts with each item of
equipment. In such cases we could model the attribute by a JDO relation. This would be more powerful
and much more convenient to use. However, JDO relations are unordered, and so this mapping would not
be appropriate if we wanted to rank the contacts in order of importance, or if the contact index in the
sequence conveyed some additional information. Without additional hints from the user we cannot exploit
such modelling choices.

5.6 Type aliases

Unlike C++, Java does not support a “typedef” mechanism. This leaves us with two choices. We could
create new types that extend, or encapsulate, the existing types. Unfortunately, subclassing isn’t always
possible as some classes are declared as “final”, e.g. String. Encapsulation also has its drawbacks. The
alternative is to replace all occurrences of the derived type by the implementation type. This approach
throws away some type information, but seems the best option in this situation.

5.7 Choice types

Consider a type such as

ObservedValue = Choice{integer Integer, real Real}

A natural encoding of such a type translates ObservedValue into an abstract base class, with each choice
mapping to a derived class. Java’s instanceof operator can then be used to determine which branch
of the choice is represented by a particular ObservedValue instance. The prototype translator uses this
approach, nesting the choice classes within the abstract base class to minimize namespace pollution. The
ObservedValue type would therefore be mapped to code similar to the following.

public abstract class ObservedValue {
public static class IntegerChoice extends ObservedValue {
public Integer integer;

public IntegerChoice(Integer integer) {
this.integer = integer; }

...
}

public static class RealChoice extends ObservedValue {
public Real real;

public RealChoice(Real real) {
this.real = real; }

...
}

}

The translator drops the “Choice” su�x when no naming confusion would arise from its omission. A frequent
idiom in NETeXPERT uses the Null type as one of the choices to indicate an optional value. The system
optimizes such cases to avoid generating multiple Null instances.

5.8 Any type

Section 3.7 describes the encoding of Any types. Note that the name that appears in the MOATT STRVALUE
column may not be the same as the Java class used to represent this type. There are numerous reasons for
why these names may di↵er, and these are discussed in Section 6.1. At this stage it is su�cient to note the
need for a map from OSI names to Java class names.
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A static type map initially maps strings representing OSI class names to their corresponding Java class
name. When an Any type is encountered that uses this class then Java reflection is used to find the
jdoLoadType method for the corresponding Java class. The map is updated by replacing the Java class
name by the Method object. This object is then invoked with the appropriate arguments to construct an
object from the MOATT rows in the result set. Here is a sketch of the jdoLoadType method for the Any class,
excluding any error checking:

public class Any
...

public static Object jdoLoadType(
int attrid, String prefix, ResultSet rs, PersistenceManager pm) {

if (attrid != rs.getLong(1)) return null;
String compid = rs.getString(2);
if (compid.equals(".")) compid = "";
if (!compid.startsWith(prefix)) return null;
String classNameString = rs.getString(3);
String osiName = // Strip o↵ 0< and > brackets

classNameString.substring(2, classNameString.length()-1);
Object o = typeMap.get(osiName);
if (o instanceof String) { // Find jdoLoadType method for class

String className = (String)o;
Class clasz = Class.forName(className);
Method m = clasz.getDeclaredMethod("jdoLoadType",
new Class[] { int.class, String.class,

ResultSet.class, PersistenceManager.class });
typeMap.put(osiName, m); // Cache result for next time

o = m;
}

Method m = (Method)o;

if (prefix.length() == 0)
prefix = classNameString;

else
prefix = prefix + "." + classNameString;

rs.next();
return m.invoke(null, // It is a static method

new Object[] { new Integer(attrid), prefix, rs, pm });
}

}

5.9 Triggers

Although views allow us to massage the OSI schema into a form that is more amenable to processing by a JDO
implementation, there is a catch. Whenever an object is made persistent, is updated, or deleted, the JDO
implementation will try to perform the corresponding database operation on the view. The database system
needs to be told how such operations should be translated into equivalent operations on the supporting
tables. We do this by defining INSERT, UPDATE and DELETE triggers on all the managed object views.
Take the equipment class as an example. The view constructed for this class was described in Section 5.1.
When the JDO system tries to insert a row into this view we must translate this operation into a sequence
of inserts into the MOATT table, one for each attribute. The trigger for achieving this would have the
following form.

create or replace trigger JDO_EQUIPMENT_I
instead of INSERT on JDO_EQUIPMENT
for each row
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begin
insert into MOATT

( MOID, ATTRID, STRVALUE, SYNTAX )
values ( :NEW.MOID, 1000, :NEW.ADMINISTRATIVESTATE, 3 );

insert into MOATT
( MOID, ATTRID, LOWINTVALUE, SYNTAX )
values ( :NEW.MOID, 1022, :NEW.LOCATIONNAME, 6 );

...
end;

When the JDO implementation creates an instance of a derived class it has to insert a row into each view in
the inheritance chain. So creating an instance of an XC1000 class might result in rows being inserted in the
JDO XC1000, JDO EQUIPMENT and JDO MO views. The trigger for the JDO MO view is responsible for calling
the netx createmo procedure.

create or replace trigger JDO_MO_INSERT
instead of INSERT on JDO_MO
for each row
declare ...
begin

select CLASS into clasz from JDO_CLASSTYPE
where JDO_CLASSTYPE.TYPE = :NEW.TYPE;
select NAMINGATTRIBUTE, ISAMGR into namingatt, mom from CLASS
where CLASS.CLASS = clasz;
netx_createmo(:NEW.MO, :NEW.NAME, clasz, NVL(:NEW.PARENT,0),

NVL(:NEW.MOM,0), :NEW.REPORTEDAS,
namingatt, mom, retkey, retval);

if (retval <> 0) then raise creation_failed; end if;
exception

...
end;

Note that the insertions must be performed in the natural order, starting at the base class and finishing at
the most derived class, to ensure the triggers are fired in the correct order.

Updating an attribute is handled in a similar fashion.

create or replace trigger JDO_EQUIPMENT_U
instead of UPDATE on JDO_EQUIPMENT
for each row
begin

if :NEW.ADMINISTRATIVESTATE <> :OLD.ADMINISTRATIVESTATE then
update MOATT set STRVALUE = :NEW.ADMINISTRATIVESTATE
where MOID = :NEW.MOID and ATTRID = 1000;

end if;
if :NEW.LOCATIONNAME <> :OLD.LOCATIONNAME then

update MOATT set LOWINTVALUE = :NEW.LOCATIONNAME
where MOID = :NEW.MOID and ATTRID = 1022;

end if;
...

end;

Deletion is even easier. The netx deletemo procedure tidies up all the MOATT entries for an object. So as
long as the deletes for the object are performed in the reverse order to the inserts then all the work can be
left to the delete trigger on JDO MO. The delete trigger for the equipment class therefore does nothing.

create or replace trigger JDO_EQUIPMENT_D
instead of DELETE on JDO_EQUIPMENT
for each row
begin

return;
end;
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The delete trigger on the JDO MO view actually deletes the object.

create or replace trigger JDO_MO_DELETE
instead of DELETE on JDO_MO
for each row
declare ...
begin

netx_deletemo(:OLD.MO, retval);
if (retval <> 0) then raise deletion_failed; end if;

exception
...

end;

5.10 Relationships

There are two aspects of relationships we must consider when generating classes for managed objects. Given
an object we must be able to determine which other objects it is associated with by a specified relation. We
must also be able to add and remove associations between objects. We consider these two cases separately.

The OSI2JDO translator generates a Relation class to represent relations. An instance of this class can
be obtained via a static find method given the relation’s name. The MO class defines a get method with
the signature

java.util.Collection get(Relation r)

If at most one object is expected to be associated with this object by the specified relation then the get1
method can be used. It raises an exception if two or more related objects are encountered.

MO get1(Relation r)

The implementation of these methods is slightly tricky. The normal JDO query mechanism can filter
a set of objects based on the values of selected attributes. However, when querying for the targets of a
managed object relation the information that determines which objects to select is contained in a separate
table. One strategy might be to make the rows in the MORELATE table JDO objects in their own right. We
could then add an additional attribute to each managed object that was mapped to the relevant subset
of the MORELATE objects, using a JDO relation. The get methods could then filter such sets to select the
objects for a particular relation. However, this all starts to sound fairly expensive. Given keys for a managed
object and a relation it is easy to write a SQL query that returns rows containing a key for each matching
managed object. We could use separate queries to map these keys into managed objects, but it would be
more e�cient, and neater, if the JDO implementation could do this for us. Section 4.7 described how SQL
can be embedded within JDO queries, and this mechanism is used to implement the get methods e�ciently.

There are a variety of mechanisms we could introduce to add and delete associations between objects.
Ideally we would like a mechanism that could enforce typing and multiplicity constraints. However, there
is a limit to how far one can go in this direction given the schema we have to work with, and the need to
interoperate with NETeXPERT. The approach adopted by the prototype translator uses the presence of
relational attributes to trigger the generation of methods to manipulate the corresponding relations. This
is best illustrated by an example.

In Section 3.8 we introduced an Application class with a Manglers relational attribute associated with
the mangledBy relation. On discovering this attribute the translator generates the code

private java.util.List mangledBy;
public java.util.List getMangledBy() { return mangledBy; }

Note that the attribute is only used to trigger the generation of this code. It’s name is not used. The
corresponding SJDO file establishes this field as one end of a many-to-many relationship.

<field name="mangledBy">
<many-to-many-mapping>

<ext-ref
from-table="JDO_APPLICATION"
from-field="MOID"
lookup-table="JDO_MANGLEDBY_REL"
lookup-from-field="MO1"
lookup-to-field="MO2"
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to-table="JDO_MO"
to-field="MO"/>

<result-type>
java.util.ArrayList

</result-type>
</many-to-many-mapping>

</field>

The JDO MANGLEDBY REL view takes care of the fact that both directions in an association must be considered.
It is defined by

create or replace view JDO_MANGLEDBY_REL as
select MO1, MO2 from MORELATE where KIND = mangledBy key

union
select MO2, MO1 from MORELATE where KIND = mangles key

One of the advantages of using JDO is that it hides all the messy details of manipulating such relationships.
For example, given an application object A, the expression A.getMangledBy() will return the collection
of objects, typically developers, that are currently mangling this application. Furthermore, any changes to
this collection will be transparently written back to the database when the transaction is committed. The
JDO implementation will generate INSERT and DELETE statements in such cases, and the triggers on the
relation views make the appropriate modifications to the MORELATE table.

Relational attributes of type MO are treated slightly di↵erently. For example, the presence of the MangledApp
attribute in the Developer class would result in the following code being generated.

private java.util.List mangles;

public MO getMangles() {
if (mangles.size() > 1) throw new IllegalStateException();
return (mangles.size() == 0) ? null : (MO)mangles.get(0);

}

public void setMangles(MO mangles) {
this.mangles.clear();
this.mangles.add(mangles);

}

The mangles field is still treated as a many-to-many mapping. However, the type of the relational attribute
is taken as a hint that the multiplicity of this relation is expected to be 0..1. If, at run-time, this turns out
not to be the case then the getMangles method raises an exception.

The translator has to handle the Contains and Manages associations specially. One reason is that there
are no relational attributes for these relations, and so the mechanism described earlier would not generate
any code for them. The state for these relations is also duplicated in the MO table. The MO class seems
a natural place to define getter and setter methods for manipulating the ContainedIn relation. Every
class which isn’t a managed object manager also has getter and setter methods for the ManagedBy relation.
Unfortunately the ability to manage objects is orthogonal to the class hierarchy of managed objects, and
so there is no convenient place in this hierarchy in which to define these methods just once. We may even
need to define disabling versions of these methods if a superclass is a not a managed object manager, and a
subclass is.

The attributes supporting these methods are declared in the MO class. JDO propagates any changes to
these attributes to the JDO MO view. Triggers on this view then ensure that both the MO and MORELATE tables
are suitably updated.

create or replace trigger JDO_MO_UPDATE
instead of UPDATE on JDO_MO
for each row
begin

if :NEW.PARENT <> :OLD.PARENT then
update MO set PARENT = :NEW.PARENT where MO = :NEW.MO;
delete from MORELATE where MO1 = :NEW.MO and KIND = 3;
insert into MORELATE values (:NEW.MO, 0, :NEW.PARENT, 0, 3);
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end if;
if :NEW.MOM <> :OLD.MOM then

update MO set MOM = :NEW.PARENT where MO = :NEW.MO;
delete from MORELATE where MO1 = :NEW.MO and KIND = 5;
insert into MORELATE values (:NEW.MO, 0, :NEW.MOM, 0, 5);

end if;
end;

6. A PROTOTYPE IMPLEMENTATION

In this section we describe some of the finer points of the prototype OSI2JDO translator.

6.1 Namespaces

Name translation is one of the more tedious aspects of mapping OSI classes to JDO classes. We would
like to map OSI class names to Java class names, for example. However, a valid OSI class name may not
satisfy the rules for Java identifiers and so the name must be altered in some cases. We must also treat
class and attribute names di↵erently. Although Java is case-sensitive, Java classes must be stored in files
with matching names. As some file systems, e.g., Windows, are case-insensitive, class names may clash
when they only di↵er in case. The translator must therefore maintain information about what names have
currently been allocated in each namespace, and rename identifiers where necessary. This process should
minimize any changes to make it easy to relate the Java names back to the OSI names. The translator also
emits a special osi.name JavaDoc tag when the names di↵er to make the connection clearer. OSI allows
type names to be the same as managed object class names. To avoid renaming in such cases the types are
translated into a separate package. In the current implementation this has the secondary advantage that
the MO classes are JDO-capable, whereas all the classes in the Types subpackage are not.

The system constructs various views and triggers for the MO classes it encounters, and we need to generate
names for these elements as well. Oracle and Java have di↵erent sets of rules governing valid identifiers and
reserved words. The translator therefore maintains separate namespaces for these.

6.2 JDO Use in the Translator

The translator needs to access various database tables during the translation process. The prototype uses
JDO to simplify this task. Some tables are naturally mapped to a class hierarchy rather than a single
class. The ABSTRACTTYPE table is an obvious example. The translator has separate classes for translating
records, enumerations, primitive types, and so on. As described in Section 4.3, the intelliBO implementation
requires a column in the base class table containing the class of the instance corresponding to this row. The
ABSTRACTTYPE table has no such column, but we can create a view that does. The view can also hide the
messy details associated with the use of segments in this table.

The first step is to define a stored function that can classify an ABSTRACTTYPE row into a Java class name.

create or replace function AbstractTypeClass
(reference in varchar2, notation in varchar2)

return varchar2 is
begin

if (INSTR(notation, ’Sequence{’) = 1)
then return ’com.agilent.osi.JDO.RecordType’;

elsif (INSTR(notation, ’Enumerated{’) = 1)
then return ’com.agilent.osi.JDO.EnumeratedType’;

elsif (INSTR(notation, ’Choice{’) = 1)
then return ’com.agilent.osi.JDO.ChoiceType’;

elsif (INSTR(notation, ’SequenceOf ’) = 1)
then return ’com.agilent.osi.JDO.ArrayType’;

elsif (reference = ’MO’)
then return ’com.agilent.osi.JDO.MOType’;

elsif (reference = ’Any’)
then return ’com.agilent.osi.JDO.AnyType’;

elsif (notation = reference)
then return ’com.agilent.osi.JDO.PrimitiveType’;

else return ’com.agilent.osi.JDO.TypeDef’;
end if;
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end;

A second function is used to concatenate all the notation segments for a particular type.

create or replace function Notation_Suffix(ty in number)
return VARCHAR2

is
cursor notation_cursor is

select NOTATION from ABSTRACTTYPE
where TYPE = ty and SEGMENT > 0 order by segment;

notation_val notation_cursor%rowtype;
result varchar2(32767);

begin
for notation_val in notation_cursor loop

result := result || notation_val.notation;
end loop;
return result;

end;

With these building blocks in place we can construct a view to use for the AbstractType base class.

create or replace view JDO_ABSTRACTTYPE as
select TYPE, REFERENCE,

NOTATION || Notation_Suffix(TYPE) NOTATION,
AbstractTypeClass(REFERENCE, NOTATION) CLASS

from ABSTRACTTYPE where SEGMENT = 0;

Each subclass also requires a view, but such views are trivial to construct as they only requires a single
column, e.g.

create or replace view JDO_ENUMERATEDTYPE as
select TYPE from JDO_ABSTRACTTYPE
where CLASS = ’com.agilent.osi.JDO.EnumeratedType’;

Note that these views are only used at translation time, and therefore any potential ine�ciencies arising
from their use are of lesser importance. The tables are also never modified by the translator, and so such
views require no triggers, unlike the managed object case.

6.3 Lazy File Writers

Ideally a translator should be incremental, processing just those classes and types that have changed since
the last time the program was run. Unfortunately, it is not clear how to determine this without additional
support from the NETeXPERT system. The prototype translator therefore processes all the classes and
types in the database whenever it is run. Most of the files produced by this process will be identical to the
previous versions. But if the translation process rewrites each file then the timestamp will change, forcing
a lot of unnecessary recompilation and reenhancement. To avoid this situation the prototype makes use of
a lazy file writer class. The idea is very simple. Instead of writing to a file, a lazy file writer writes to a
bu↵er in memory. When the object is closed the contents of this bu↵er are compared to the old contents
of the file on disk. If no file currently exists, or the contents di↵er, then the bu↵er is written to disk. This
strategy prevents unnecessary timestamp changes, and significantly reduces the overall translation time in
many cases.

6.4 Ant Tasks

The prototype uses Ant[ANT ] to choreograph the various stages involved in the translation process. One
advantage of Ant is the ease in which it can be extended using custom tasks. A task was developed to package
up calls to the intelliBO enhancer. The enhancer can either process an entire folder, or can just enhance the
files passed on the command line. The Enhancer task determines which files require enhancement, based
on the time stamps of the class files and the configuration files, and then passes a list of selected files to
the enhancer. Such an approach is not entirely safe, as changes to a base class may a↵ect the enhancement
of a subclass. The incremental enhancement process can therefore be disabled when required. Ideally the
enhancer itself should be smarter as it has easier access to the information necessary for it to be both
incremental and safe.
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6.5 The toString Method

In addition to generating accessor methods for the class data, a translator can easily construct other utility
methods as well. To illustrate this process, the translator defines a toString method on managed objects
and attribute types. This has the additional advantage of aiding debugging. Managed object instances
may refer to other managed objects, via the class attributes, and so any traversal operation must guard
against cyclic references. A simple solution would be to pass a depth limit to the function, stopping the
recursion when this depth is reached. However, Java’s toString method does not take such a parameter.
One technique for limiting the recursion, without requiring additional parameters, uses thread-local storage.
The idea is simple. The “top-level” toString call initializes a thread-local variable with a depth-limit. Any
recursive calls can then access the current value of this variable to determine the nesting depth, and the
thread-local nature of this variable prevents multiple calls in separate threads from interfering with each
other. The translator’s implementation of toString uses this approach. The method also uses the pre-fetch
mechanism to load structured attributes, avoiding unnecessary round-trips to the database.

6.6 User Code

In the simplest scenario the translator would generate packages containing the Java versions of the OSI
classes, and types. These would then be compiled, enhanced, and stored in a JAR file. However, it is
di�cult to exploit the inheritance in these classes using such a technique, and user code would quickly
become littered with instanceof tests. Users, in an attempt to avoid this situation, may be tempted to edit
the Java source code generated by the translator, adding in class-specific methods to perform various tasks.
But this approach creates its own problems as these changes will be overwritten when the translator is next
invoked. Manually reapplying these changes each time is clearly unacceptable, and so a more automated
strategy is required. The approach adopted by the prototype requires the user to write any additional code
in separate “include” files. When the translator is generating code for a class it checks to see if any file
with the same name exists in an include directory. If a match is found the contents are merged into the
generated file. The included text is bracketed in comments reminding the user that such code should not be
edited in-situ. The tags could also be used by a simple tool to merge in changes to user code without having
to rerun the translator. However the enhancer would still need to be run again. The choice types require
special treatment as in these cases a user may wish to add additional code to each of the choice classes as
well as the outer abstract base class. The include approach is simple, avoiding the need for a “smart di↵”,
and works well in practice. The same include path is used to locate some of the primitive classes, such as
MO and Any, allowing these to be overridden by the user.

7. EXAMPLES

In this section we present a few code fragments to illustrate the general flavor of the JDO interface. Suppose
we wished to display every managed object in the OSI database. This could be achieved by the following
code:

Query query = pm.newQuery(MO.class);
results = (Collection)query.execute();
for (Iterator it = results.iterator(); it.hasNext();)

System.out.println((MO)it.next());

If we wanted to restrict the output to just those objects derived from the equipment class, including its
subclasses, and with an operational state of active, then the following code would su�ce:

Query query = pm.newQuery(equipment.class,
"operationalState == \"" + operationalStateEnum.active + "\"");

Collection results = (Collection)query.execute();
for (Iterator it = results.iterator(); it.hasNext();)

System.out.println((equipment)it.next());

Given any managed object m, where getContainedIn returns the object m0, you would expect m to be in
the set of objects that m0 contains. We can check that this is indeed the case for all objects in the database.

Relation contains = Relation.find("Contains", pm);
Query query = pm.newQuery(MO.class);
Collection results = (Collection)query.execute();
for (Iterator it = results.iterator(); it.hasNext();) {
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MO mo = (MO)it.next();
MO cmo = mo.getContainedIn();
if (cmo != null) {

Collection c = cmo.get(contains);
assert c.contains(mo);

}
}

Creating new persistent objects is also straightforward. In the next example we create a new XC1000 instance
and add it to the database.

location DFW = (location)MO.find("DFW", location.class, pm);

XC1000 newXC = new XC1000("DFW_XC1000-1",
administrativeStateEnum.unlocked,
DFW,
operationalStateEnum.enabled);

SequenceOfMO contacts = new SequenceOfMO();
contacts.constrainRangeType(contact.class);
contact DFW_Tech = (contact)MO.find("Fred_Jones", contact.class, pm);
contacts.put(0, DFW_Tech);
newXC.setContactNames(contacts);

Transaction tx = pm.currentTransaction();
tx.begin();
pm.makePersistent(newXC);
tx.commit();

Updating a structured attribute is slightly more cumbersome than manipulating a non-structured one as we
have to remember to mark the attribute as “dirty”.

tx.begin();
XC1000 testXC = (XC1000)MO.find("DFW_XC1000-1", XC1000.class, pm);
SequenceOfMO contacts = testXC.getContactNames();
contacts.put(1, MO.find("Bill_Smith", contact.class, pm));
textXC.putContactNames(contacts); // Marks the attribute as dirty

tx.commit();

Suppose we wish to manipulate the contacts and user labels for the equipment objects. Both of these are
structured attributes and it may be more e�cient to load these in advance of their use rather than doing
this lazily. This is the purpose of the pre-fetch mechanism, as illustrated by the following fragment.

MO.FetchGroup fg = equipment.jdoFetchGroup(new String[] "contactNames", "userLabels");
Query query = pm.newQuery(equipment.class);
Collection results = (Collection)query.execute();
for (Iterator it = results.iterator(); it.hasNext();) {

equipment e = (equipment)it.next();
e.jdoPreFetch(fg);
// Do something using the contact names and user labels

...
}

It is simple to delete selected objects. Here is an example that also illustrates the use of query parameters
to avoid rebuilding a query each time it is used.

Query query = pm.newQuery(XC1000.class);
query.setFilter("operationalState == state");
query.declareParameters("String state");
...
Collection results =

(Collection)query.execute(operationalStateEnum.disabled.toString());
for (Iterator it = results.iterator(); it.hasNext();)

pm.deletePersistent(it.next());
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7.1 The IGP Detective

We now describe a slightly larger example built using the JDO interface. A router running an interior
gateway protocol, such as OSPF, builds up a topology of the surrounding area by exchanging routing
messages with its peers. The router uses this information to construct routing tables. But this data would
be of more general use if it could be extracted from the network in a cost-e↵ective fashion. There are two
main strategies for obtaining details of an evolving topology. A polling interface returns the current state
of the graph, including routers, interfaces, networks, and edges, on demand. An interface based on the
observer pattern[Gamma et al. 1995] notifies a set of interested subscribers whenever the topology changes.
The latter approach is usually the preferred solution. It is trivial to write an external process that uses this
interface to provide a polling interface for other users. However, the opposite approach, building an observer
interface on top of a polling interface, will always be very ine�cient.

The topology of the network is unlikely to change very frequently, at least at the level of detail monitored by
OSPF.6An SNMP-based observer interface will therefore place very little strain on high-end routers, where
the packet-forwarding engines are typically decoupled from the management processor handling routing
updates. However, low-end routers use the same processor for all their tasks. In such cases even small
demands for extra work, such as the generation of additional SNMP traps, may be objectionable. This
is the niche that the IGP Detective aims to fill. By eavesdropping on the OSPF signaling tra�c, it can
construct the same topology information as a router, and export this via polling or observer interfaces.

The IGP Detective uses Corba, rather than SNMP, to expose the topology information. For this particular
task the choice is largely a matter of taste. For an observer interface the tra�c volumes are su�ciently low
that the encoding ine�ciencies of SNMP can be safely ignored. Furthermore, using a MIB compiler to map
the low-level SNMP calls into MIB-specific classes is analogous to using an IDL compiler to hide the details
of IIOP. Fortunately, such di↵erences can be easily hidden from users of the topology information, allowing
Corba and SNMP-based solutions to peacefully coexist.

One potential use of the topology information is for auto-discovery, populating an OSS database with
managed objects representing OSPF-aware routers and interfaces. Subsequent topology changes can then
trigger corresponding changes to the state attributes of these objects. The OSI2JDO translator makes such
applications almost trivial to develop. To evaluate this claim, a small program was developed to interface
the IGP Detective to the OSI database. Only details of OSPF routers, interfaces, and their observed state,
were to be included in the database. The edge information provided by the IGP Detective was discarded.

The first step was to define OSPF Router and OSPF Interface classes in NETeXPERT. They both have
OSPF Status attributes to record their current known status. On startup, all managed objects representing
interfaces and routers are set to the disabled state. They are then re-enabled when the program is notified
of their existence by the IGP Detective.

Query q = pm.newQuery(OSPF_Router.class);
Collection result = (Collection)q.execute();
for (Iterator it = result.iterator(); it.hasNext();) {
OSPF_Router r = (OSPF_Router)it.next();
r.setOSPF_Status(OSPF_Status.disabled);
for (Iterator interfaces = r.contains().iterator();

interfaces.hasNext();) {
OSPF_Interface rif = (OSPF_Interface)interfaces.next();
rif.setOSPF_Status(OSPF_Status.disabled);

}
}

This approach is only adequate for monitoring a network with a single agent and area. What we should
really do is disable just those routers in the OSPF area(s) monitored by the agent. Unfortunately the
current API does not expose this information to the observer. However, if we knew the area was “A” then
we would just replace the expression pm.newQuery(OSPF Router.class) by a more refined filter such as
pm.newQuery(OSPF Router.class, "area == A").

To create a new router you just need to create a new instance of the OSPF Router class and make it
persistent. All of the attributes of this class are declared as mandatory, and so they must all be provided as
constructor arguments.

6Some of the tra�c engineering extensions to OSPF may make topology changes much more frequent.
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OSPF_Router or = new OSPF_Router(
routerName(ra), area, address, type, OSPF_Status.enabled);

pm.makePersistent(or);

To add a new interface to this router you would construct a new instance of the OSPF Interface class,
declare that it is both contained in, and managed by, the specified router, and then make it persistent.

OSPF_Interface rif = new OSPF_Interface(
interfaceName(ifa), address, OSPF_Status.enabled);

rif.setManagedBy(or);
rif.setContainedIn(or);
pm.makePersistent(oif);

Although not required in this example, deleting an interface or router is equally simple. You would use a
Query to find all objects matching a given name, area, or status. The pm.deletePersistent method can
then be used to delete individual objects.

One might question whether it is appropriate to store the current state of an external component as
a persistent attribute in a database object. Some details of an object are more ephemeral than others.
Although there are similar examples in the OSI literature, maintaining ephemeral state in the database
raises the question of how such state is kept synchronized when the OSI system is restarted. It may also
make some kinds of inference expensive unless extensive caching is used, but this complicates replication.
The location of a device, and its current operation state, should perhaps be treated, and stored, very
di↵erently in an OSS system.

The example requires about ten lines of code to find an IGP Detective agent and subscribe to it. A similar
amount of boilerplate code is required to establish a JDO connection to the OSI database. Finally, a page
of code implements the call-backs required by the Observer interface, including the JDO code to create and
manipulate the managed objects. Clearly a production version of such a utility would require more code to
make it robust, but it gives an indication of how easy it is to write such applications given the right building
blocks.

8. CONCLUSIONS

The current prototype has demonstrated some of the advantages of providing a JDO interface to the IDEAS
database. Some types of application can be developed very quickly using such an interface, as illustrated
in Section 7.1. The OSI2JDO translator provides a mechanism for incorporating OSI data in a J2EE
environment[Bodo↵ et al. 2002], and could very easily be extended to support standards like JMX[Ebro
et al. 2001].

8.1 Timings

Without access to multiple test databases and some larger applications it is hard to draw too many conclu-
sions about the performance of the prototype translator and runtime environment. Furthermore, no attempt
has been made to optimise the translator, and we are using a debug build of the intelliBO enhancer. How-
ever, with these caveats out of the way, here are some rough performance measurements. The translator
took 75 seconds to convert the test database into 196 managed object classes and 584 attribute type classes.
These files took 50 seconds to compile, and a further 110 seconds to enhance. All the timings were made
on a mid-range laptop running Windows 2000 and JDK1.4. Clearly at the present time the enhancer is
the main bottleneck in the translation process. After the initial build then subsequent runs are a lot faster
using the incremental feature of the Enhancer task described earlier. If a new class has been added then the
OSI2JDO translator has to be rerun as it is not incremental at present.

8.2 Schemas

The system makes extensive use of views and triggers to bridge the gap between database schema and JDO
implementation. Such features obviously place some additional load on the database, and further work is
required to gauge the extent of this overhead. However, much of the ine�ciency of the JDO interface is
likely to stem from the schema itself, where a single attribute change may potentially involve altering many
rows in the MOATT table. In some cases it may even be more e�cient to update an object via a view than
though separate remote updates to the database for each MOATT entry.
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The current database schema is presumably optimized for ease of interpretation. However, is this the best
trade-o↵ given the typical use of such a system? New classes, attributes, and types are defined fairly infre-
quently, at least relative to their use. Performing a “compilation” step whenever a new class is introduced,
and then using a more optimized schema for the classes, may improve the e�ciency of IDEAS and be easier
to map to a JDO implementation. The JDO classes produced by the translator could also be viewed as a
stable interface between the user and an evolving database schema.

8.3 Caching

It seems likely that an IDEAS server caches data in memory for e�ciency reasons, exploiting the fact that it
is usually the only application accessing the database tables. The OSI documentation says very little about
this aspect of the system, or where the transactional boundaries are. Given this lack of information, for the
prototype we decided to ignore such complications entirely. For some applications, such as bulk loading,
or report generation, this is unlikely to cause problems. However, a more robust solution would require a
greater degree of cooperation between the JDO classes and the IDEAS server, e.g. using events to force
cache refreshes in the server.

8.4 Licensing

JDO implementations typically license the enhancer, with the run-time support code being freely dis-
tributable. This model works well when a company uses JDO to implement a product and where the
details of JDO are hidden inside the application. Unfortunately the OSI2JDO translator doesn’t quite fit
this pattern. Running the translator on a user’s database produces files that must be enhanced before use.
To do this the user requires access to a JDO enhancer. Shipping an enhancer with the product is problematic
as the user could use the tool to process files unrelated to this application. However, it should be possible
to sign each generated file to indicate it has been generated by the OSI2JDO translator. A JDO vendor
might then be persuaded to adapt an enhancer to only work on such signed files, and license such a tool on
more favorable terms.

8.5 Future Work

One should not underestimate the amount of e↵ort required to transform most prototypes into production
quality applications. The OSI2JDO translator, although reasonably robust, is no di↵erent in this respect
and was written without any internal knowledge of the OSI system. An assessment of the likely impact of
the translated code on the IDEAS server, and the development of mechanisms to allow the two systems to
interact smoothly, are obviously areas requiring future work.

The OSI2JDO translator currently translates all the managed object classes and types it finds in the
database. Obviously a more incremental approach would be preferable. If a new class is added to the
database then we should only have to translate this class, plus any additional types it may introduce, and
update the database with a small number of new views and triggers. In some scenarios a user may only
require a small subset of the available classes to have JDO equivalents. Whilst pruning a JAR file to remove
unwanted classes is a simple enough process, this is not an ideal solution.

There is one obvious missing part to the jigsaw that we have constructed. There is no mechanism for
sending or receiving events, or for mapping the event objects into their natural Java classes. Adding the
ability to eavesdrop on the IDEAS event stream would allow some IDEAS rules to be replaced by Java code
where this is appropriate. The ability to send events to the IDEAS server would allow Java applications
to act like gateway processors in some cases, and may also provide a simple mechanism for informing the
server of changes that might invalidate various caches.

Interacting with SNMP agents forms an important part of many OSS systems. The current translator
allows us to manipulate managed objects in the database using a JDO interface. A natural question to
ask is whether we can manipulate the SNMP agents using a similar approach. What would this mean?
A JDO enhancer could be written that was parameterized on configuration files mapping fields to SNMP
Oids rather than database tables and columns. The JDO features would help batch fetches and updates,
and the agents could be queried using a natural syntax. Ideally you would like to be able to change the
state of a managed object in the database, and make an equivalent change to an SNMP agent, and then be
able to commit the changes atomically using a two-phase commit. Unfortunately, SNMP doesn’t support
transactions, although there have been some proposals in this direction.[] Some MIBs provide transaction-
like facilities that could perhaps be exploited by a JDO interface. In some scenarios it may also be possible
to order the commit operations to minimize the e↵ects of the lack of transactions, e.g. updating the agent
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last so that the database changes can be rolled back if necessary. Although very speculative at this stage,
the idea may have su�cient potential to warrant further exploration.

REFERENCES

Apache ant. http://jakarta.apache.org/ant.

Bodoff, S., Green, D., Haase, K., Jendrock, E., Pawlan, M., and Stearns, B. 2002. The J2EE Tutorial. Addison-Wesley.

Booch, G., Rumbaugh, J., and Jacobson, I. 1999. The Unified Modeling Language User Guide. Addison Wesley.

Ebro, C. et al. 2001. Java Management Extensions (JMX). Tech. Rep. JSR000003, Sun Microsystems.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. 1995. Design Patterns. Addison-Wesley.

JDBC. 2001. JDBC Data Access API. http://java.sun.com/products/jdbc.

OSI 2000a. NETeXPERT Overview. OSI, 101 Park Way, Folsom, California 95630.

OSI 2000b. Rule Language Guide. OSI, 101 Park Way, Folsom, California 95630.

Russell, C. et al. 2001. Java Data Objects. Tech. Rep. JSR000012, Sun Microsystems.

Signsoft 2001. intelliBO User’s Guide, Version 2.5. Signsoft, Leipziger Str. 118, 01127 Dresden, Germany.

SQLJ. 1998. SQLJ: Embedded SQL for Java. http://otn.oracle.com/tech/java/sqlj jdbc.

Agilent Technical Report, No. AGL-2002-2, June 2002. Agilent Restricted


