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Abstract—The Agilent Protocol Encoder (APE) was designed
as a test-bench to explore various aspects of protocol specification.
In addition to designing a domain-specific language for speci-
fying communication protocols, the project built an integrated
development environment (IDE) to assist in the construction and
debugging of such specifications. The concept of action-directed
decoding was developed to allow a range of different decoders
to be constructed from the same specification. The compiler can
generate code for the APE virtual machine (APE VM), with
an instruction set tailored to the task of protocol decoding. A
firmware implementation of this VM has also been developed,
along with a more traditional back-end that generates C++ code.

Index Terms—protocol decoding, specification languages.

I. INTRODUCTION

HE APE framework, developed within Agilent Tech-

nology’s research labs, consists of a new language for
specifying communications protocols, a tool chain to support
the manipulation of specifications written in this language,
and translators into high-quality decoders, both in software
and firmware. This paper describes the APE language, the
motivation behind its design, the principle achievements of
the project, and the areas that have been identified for future
exploration.

Protocol messages are typically structured in a hierarchical
fashion, but the communication links on which they are trans-
mitted are linear in nature. The protocol specification defines
how such messages are encoded into a linear stream, and
decoded back into the original representation by the receiver.
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Some protocols, such as SMTP[1] and SIP[2], are text-
based. They are distinguished by being human-readable, and
in many cases free-format in the sense that white-space is not
significant. The task of decoding such protocols, at least at the
syntactic level, is very similar to that of parsing a conventional
programming language. Existing compilation tools, such as
YACC[3], Bison[4] and ANTLR[5], can be readily adapted
to the decoding task. Other protocols are XML-based, with
SOAP[6] being a good example of this style. Many tools exist
for manipulating XML documents, and these can be used for
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manipulating XML-based protocols. Where space is important,
for example, when transmitting data across a link where you
wish to conserve bandwidth, a binary protocol is usually
more appropriate. Such protocols attempt to compress the
data into a small number of bits, and are usually not human-
readable without mechanical assistance. Bit-level protocols are
widespread, ranging from the various IP stacks used in the
Internet to the commonly used encodings for ASN.1-based
protocols. The APE is intended to address the problem of
describing, encoding and decoding bit-level protocols.

II. BACKGROUND

In the beginning protocol decoders were typically written
by hand. Conceptually this is quite a simple task, but it is
time-consuming and error-prone. Over time people developed
support libraries to assist in this task. The structure of the
code naturally mimicked the structure of the protocol being
decoded, and it quickly became apparent that this task could
be mechanized if the protocols were specified in a machine-
readable fashion. Over the years a number of such tools have
been developed, so why introduce yet another language? The
majority of the previous examples have been procedural in
nature. They describe how to decode a protocol, rather than
simply describing the abstract structure of the protocol’s data
units. This tends to lead to overly verbose specifications where
the user is forced to specify details that could be inferred
by a compiler. Furthermore, generating encoders from such
specifications can also be problematic. One of the initial
goals of the APE project was to develop a more declarative
way of specifying protocols. This should enable the same
specification to be used for both encoding and decoding. By
constructing a domain-specific language for the task, coupled
with a compiler incorporating techniques like type inference
and generic dispatch, the resulting specifications should be
more concise and flexible than their procedural counterparts.

Writing the protocol specification is only part of the story.
Most people develop programs using interactive development
environments. These IDEs provide a number of advantages
over traditional command-line tools. These advantages include
on-the-fly parsing to detect syntax errors, language-aware edi-
tors that perform code-folding and syntax highlighting, power-
ful navigator windows to quickly navigate around the different
declarations within a file, and between files, language-specific
wizards to automatically generate code, integrated debuggers,
with source-level debugging, and so on. Unfortunately, when
developing protocol specifications many of the existing tools
require the users to go back to the old command-line style
of program development. All the advantages of using an IDE
are equally applicable to the task of protocol development; we
just need an IDE that supports this task.



Traditional tools typically adopt a one-size-fits-all approach
to decoding. Their decoding actions are largely independent
of the intended use of the decoder. But decoding a stream of
Ethernet packets to determine the mix of protocols encapsu-
lated within these packets potentially involves a lot less effort
than decoding the same packet stream to display in something
like a WireShark browser[7]. Another goal of the APE project
was to develop techniques to allow the decoders produced by
the compiler to be tailored to the task at hand.

III. LANGUAGE

In this paper we just give the reader a flavor of the APE
language that should be sufficient to understand the main ideas
behind the design.

A. PacketTypes

The original inspiration for the APE language was the work
done on PacketTypes by McCann and Chandra at Bell Labs
in 1999-2000[8]. Their language was both expressive and
concise, although this conciseness often led to ambiguities
within the specification. The language had the following
salient features:

e Packet descriptions are expressed as types

e The fundamental operation on packets is checking their

membership in a type.

e Layering of protocols is expressed as successive special-

ization on types.

e Refinement of types creates new types, a facility useful

for packet classification.

The starting point for the PacketTypes work was the C
programming language. The hand-written decoders that this
work intended to replace were written in C, and so the typical
protocol implementor was already familiar with this language.
Building on the notation for C structures was therefore a
natural first step. However, the type system of a language such
as C is not expressive enough to capture all of the structural
dependencies in a typical bit-level PDU. For example, in the
case of an IP PDU we might start by defining

nybble := bit[4];
short := bit[16];
long := bit[32];
IP_PDU := {

nybble version;

nybble ihl;

byte tos;

short totallength;

byte protocol;

short cksum;

long src;

long dest;

ip_option options|[];

bytestring payload;
b

This type can be interpreted as imposing a structure on
packets, but without additional constraints it allows many
sequences of bits that are not valid IP packets. The necessary
constraints appear in a where clause following the sequence,
as in:

IP_PDU := {

} where {
version#value = 0x04;
options#numbytes = ihl#value % 4 — 20;
payload#numbytes =
totallength#value — ihl#value * 4;

}

The overlay ... with refinement constraint allows us to merge
two type specifications by embedding one within the other,
as is done when one protocol is encapsulated within another,
lower-layer protocol. For example, the specification of the
encapsulation of a User Datagram Protocol (UDP) frame
within an IP packet may be specified as:

UDPinIP :> IP_PDU where {
protocol#value = 17;
overlay payload with UDP_PDU;
}

assuming that the UDP_PDU type was appropriately specified
elsewhere.

The use of constraints leads to natural and concise speci-
fications in many cases. However, the language is also very
ambiguous. One of our initial goals was to remedy some of
the deficiencies of the language, whilst retaining the flavour
of this approach.

B. APE Packet Types

The philosophy underpinning the design of the APE lan-
guage is similar to that introducted in PacketTypes, although
the syntax is less influenced by the C language. So in the APE
language the previous example would be written as follows.

1Pv4 =
( header: (
version: Ulnt4 <4>
ihl: Ulnt4
tos : Type_Of_Service
totallength: Ulntl6
protocol: Ulnt8 as IP_Protocol
cksum : Bit[16]
STC : Bit[32]
dest: Bit[32]
options: IP_Option []
) where num32 == ihl
payload: IP_Payload<header.protocol>

) where numBytes == header. totallength;

The details of this definition are not important at this point; we
are simply trying to give the reader a flavor of the language.
Just as in PacketTypes, protocols are described by types where
the structure of each type mimics the structure of the PDU
it is describing, and where constraints are used to resolve
ambiguities. The simplest packet type is Bit which matches
a single bit in the PDU. Compound types can be constructed
using sequential composition (indicated by juxtaposition), al-
ternation, and iteration. In this respect the syntax has a lot in
common with regular expressions. But types can be named,
and referenced from other types, allowing recursive types to
be constructed. Subcomponents can also be named, and then
referred to elsewhere within the type.



C. Constraints

Each type reference has a number of attributes associated
with it. Given a type reference T the expression T#atfr denotes
the value of the attr attribute of this reference. Type references
are matched against bit sequences, and so the most frequently
used attribute is size which indicates the number of bits that
matched, or should match, against the reference. A constraint
can restrict the value of this attribute to a range of values,
most typically a single integer, or can use the value of this
attribute to constrain other parts of the specification. In our
example the (user-defined) expression numBytes is interpreted as
an abbreviation for numBytes(this) which, in turn, is interpreted
as idiv (this#size, 8). When used in the expression numBytes ==
header. totallength this has the effect of constraining the type to
which the constraint is attached to have a size which is an
integral number of bytes, whose length (in bytes) is equal to
the value of the totallength field. This example also introduces
another attribute, value. By default, the value attribute for a
type reference is the bit sequence against which the reference
was matched. However, the user can also specify an explicit
value, as in

Ulnt8 = Bit[8] where value is unsigned;

Such a type matches eight bits, but the value of a reference to
such a type is the unsigned integer represented by these bits.
Other constraints include

address the bit address of the start of the type reference
in the PDU.
count the number of iterations in an iteration type
reference
choice the index of the alternation chosen in an alter-
nation type
remaining the number of bits remaining in the current
context at the start of the type reference.

One way of viewing these constraints and attributes is as
an attribute grammar[9]. We attempt to find a derivation tree
from the grammar such that the fringe of the tree matches
the bit sequence constituting the PDU being matched, the
attributes of all nodes are defined by their positions within
the tree, and where all the constraints over these attributes
are satisfied. Whilst such a view encapsulates what it means
for a bit sequence to be accepted by such a specification,
it doesn’t help us find valid derivation trees in an efficient
fashion. The challenge, from a compilation viewpoint, is to
find a deterministic decoding strategy that will accept all bit
sequences that satisfy the specification, and reject all those
that don’t.

D. Generic Types

Consider trying to specify the IPv4 protocol. The rype of
the payload field clearly depends on the value of the protocol
field. But this mapping from value to type has to be extensible
to allow new protocols to be added later. Ideally we should
not have to alter the file containing the definition of the
IPv4 protocol just because we want to handle a new IPv4-
encapsulated protocol.

The approach adopted by the PacketTypes language was to
use overlays. In our view that has a couple of disadvantages.
First, in the original definition of the IP_PDU type there is no
indication that the protocol and payload fields are linked in any
way. It is only when the reader encounters the UDPinIP type
that this linkage becomes apparent. In addition, the overlay
mechanism can be viewed as decoding a bit sequence twice,
the first time as a simple bit sequence, and then subsequently
as a UDP frame, or whatever type is imposed by the overlay.
As we will discover later, the APE allows user-defined actions
to be embedded within our packet types. If we allowed some
form of overlay mechanism it would significantly complicate
the definition of what actions get executed during a decode,
and in what order.

In the design of the APE we decided to take our inspiration
from the design of the multimethod-dispatch mechanism in
languages such as Dylan[10] and Cecil[11]. We believe our
approach makes the relationship between value and type clear,
and naturally supports extensible mappings, both at linking and
runtime. We start by defining

generic IP_Payload<protocol: Int>;

This declares IP_Payload as a generic type, i.e. a type whose
definition depends on the value of the argument, an integer in
this case. We then define

IPv4 =
( header:
...
protocol: Ulnt8
) where
payload: IP_Payload<header.protocol>
) where ...;

In this specification the structure of the payload field is
constrained by the value of the protocol field. However, the
mapping from integers to payload types is still not specified
at this point. To define this mapping the language allows us to
declare specializations of a generic type. These specializations
constrain the argument(s) of the generic to subtypes of the
original argument type(s), and then provide a definition of
the type to associate with these arguments. We view primitive
types such as Int as sets of values, and then treat subtypes as
subsets, and constants as singleton sets. With this interpretation
we can now define

IP_Payload< 6>
IP_Payload <17>

TCP;
UDP;

and so on. Here we view 6 as an abbreviation for the set
{6} which is a subset, and hence subtype, of the set/type Int.
Although fairly meaningless in this particular example, we
could also define specializations such as

IP_Payload <1000..2000> = T;

This would be used whenever the protocol value was in the
range 1000..2000 and there were no other specializations that
were more specific.



E. Most-specific specializers

Clearly for such an approach to be deterministic our spec-
ifications must be written in a way that for every possible
argument to the generic type there must be a unique most-
specific specialization. Therefore if we defined

IP_Payload <30..50>
IP_Payload <40..60>

T1;
T2,

then we would have an ambiguity unless there was also a
specialization such as

IP_Payload <40..50> = T3;

to deal with the overlap between the two ranges.

If the protocol field had the value 41 then we would view the
payload as having type T3. Why? Because 40.50 is a subtype,
when types are viewed as sets, of both 30..50 and 40..60, and
so is more specific than either of them. In the most common
case where the specializations are singleton values then it is
easy to ensure unique most-specific specializers. But in more
complex cases, involving ranges and multiple arguments, it
can be more challenging to ensure uniqueness.

The APE language supports a simple module structure.
Types are defined within the context of a module. An import
declaration allows modules to be imported into other mod-
ules, and the corresponding export declaration allows selected
types to be visible outside the module. The development
environment compiles each module independently. However,
a decoder is generated for a project, which contains a set
of modules. The specializations for each generic type can
be spread across multiple modules within the project. The
dispatching code required to support each generic type can
therefore not be generated on a per-module basis. The compiler
invokes a linker phase after all the modules in a project have
been compiled. The linker is responsible for analyzing all the
available specializations for a generic, determining the most-
specific specializations, and generating dispatching code for
the generic type.

There is one further complication that should be noted at this
point. In some cases the mapping from values to types may
need to be modified at run-time. A good example is where
dynamic port-mapping is used. An exchange of signaling
messages may establish a relationship between an IP port and
a particular protocol. To support such dynamic behavior the
generic dispatch mechanism needs to allow the runtime system
to alter its behavior. A simple strategy is to attach a map from
values to types (or pointers to their runtime representations) to
the dispatching code. The map is checked for entries first, and
if no entry is found then the statically-compiled dispatching
code is then executed as before. To avoid this overhead when
there is no need to support dynamic modifications the generic
type must be tagged with a dynamic keyword modifier when
such behavior is required.

F. Extensible Enumerations

In our previous example the protocol field contained a value
in the range 0..255, and the generic type IP_Payload also took an
integer as argument. This is perhaps not as clear as we would

like. A neater approach might be to define an enumeration type
that allowed us to use symbolic names instead of constants
such as 6 and 17 in our specifications. The protocol field could
then be defined to provide values of this type, and the generic
could be specialized on this type.

The basic idea of the enumeration mechanism is similar to
the enumerations in languages such as C++ and Java, i.e. it
defines a type/set with named values. However, where it differs
is that in some cases we want the set of named values to be
extensible. So, for example, in the IPv4 module we define an
IP_Protocol enumeration. We could, at that point, specify all the
possible values of this enumeration. But this would embed into
this module some information about lots of other protocols,
i.e. their IP protocol number. Now in some cases this might be
want you want. For example, it is natural to define all values
for the IP service precedence field within the IPv4 module, in
which case you could define the type as'

datatype IP_Precedence = {
routine = 0,
priority = 1,
immediate = 2,
flash = 3,
flash_override = 4,
critic_ecp = 5,
internetwork_control = 6,
network_control = 7

}s

Type_Of_Service = (
precedence: Ulnt<3> as IP_Precedence
delay :

)

This approach works well when all the elements of the
enumeration can be specified at the point where the type is
first introduced. However, in the case of the protocol field an
alternative approach might be to define the type within the
IPv4 module, but allow enumeration bindings to be added
to it in other modules. We refer to such declarations as
extensible enumerations. We need a mechanism for defining
which enumerations are extensible, some way of constraining
the range of permitted values, and a syntax for adding new
bindings to the enumeration. We deal with each of these in
turn.

To indicate that an enumeration is extensible we simply
attach an ellipsis to the end of the definition, as in

datatype IP_Protocol = { ip = 4, ... };
In most cases we wish to constrain the permitted values of the
enumeration, and we can use a constraint to perform this task.

datatype IP_Protocol = {...} where in 0..255;

To add an additional binding to the enumeration we use the
following syntax.

datatype IP_Protocol += { tcp = 6 };

Note that this definition can appear at the point where the TCP
protocol is defined, for example in a TCP module. It does not

I APE types form two distinct classes. Packet types are used to define the
structure of protocol elements. The attribute values range over a disjoint class
of data types, including Int, Bool, and user-defined enumerations.



have to be defined in the IPv4 module. When the compiler
builds a decoder it collects together all the modules in the
current project. Depending on the mix of modules chosen the
set of bindings for each enumeration can potentially vary.

Now whether such an approach is preferable to the non-
extensible version is partly a matter of taste. Does the knowl-
edge that TCP is mapped to value 6 in the IPv4 protocol
field “belong” to the 1Pv4 module, to the TCP module, or to an
auxiliary TCP_over_IP module, for example? If a new protocol
comes along that can also be carried over IP, do we need to go
back in and change the IPv4 module, or should we just be able
to add ourselves to this enumeration from the new module? We
need to gain more experience of writing APE specifications
before coming to any firm conclusions about which approach
works best in practice.

G. Higher-order types

Most APE types either take no parameters, or are param-
eterized on abstract types such as integers, Booleans or bit
sequences. There are occasions, however, when we require a
bit more flexibility. Consider the following examples:

TA = num: Ulnt8
values: A[num];

TB = num: UlInt8
values: B[num];

TC = num: Ulnt8
values: C[num];

There is clearly a common pattern being repeated here. It
might be clearer to define a single type parameterized on
the type being iterated over. We can write such a definition
using a higher-order type, i.e. a type that takes another type
as parameter.

NV<T> = num: UlInt8

values: T[num];
TA = NV<A>;
TB = NV<B>;
TC = NV<C>;

What if the type being passed as argument is also parameter-
ized? The TLV type in the WiMAX specification[12] illustrates
this need, and the APE syntax required to specify it.

WiMaxTLV< WiMaxTLV_Value<t:Int> > = (
type: Ulnt8
len: WiMaxTLV_Length
val: WiMaxTLV_Value<type >
where size == (len * 8)
)
We can parameterize the WiMaxTLV type on any type that takes
an integer as argument.

H. Coercions

In the APE we can coerce between different types using
the e as T syntax, for example to explicitly coerce from an
Int value to an enumeration type. Normally the type T is a
datatype. But we can also make sense of such a coercion in
the case where e is a value of type Bits, and 7" is a packet type.

Indeed you can imagine the whole decoding process as starting
with the execution of the expression e as T', where e is the bit
sequence representing the PDU and T is the root packet type
to be used to decode the PDU. The interesting thing about this
construct is that there is nothing stopping you evaluating such
an expression in the middle of another decode. Of course the
challenge is then to define what such an expression does. But
let’s delay worrying about that for now, and just consider how
we might use such an expression in a specification.

Suppose we have a protocol consisting of a collection
of blocks, where each block has some data and then two
“pointers” to other blocks. We assume the blocks can be
in an arbitrary order, possibly with gaps between them, and
with no distinguishing bit sequence at the start of each block.
Furthermore, we assume that the first block is at the start of
the PDU. Decoding a packet containing an encapsulated TIFF
file[13] might require us to handle a layout similar to this one.
How can we express such a protocol in the APE?

We define a new module, plus either import or define some
basic types such as Byte and UInt8. We then add the following
definitions to the module, where the type PDU is the root type.

Pointer <bs: Bits> =

(ptr: Ulnt8) where value = bs as

T_at_offset<ptr, bs>;

T<bs: Bits> =

length Ulnt8

payload Byte[length]

left Pointer <bs>

right Pointer <bs>
T_at_offset<offset: Int, bs: Bits> =

prefix:
t: T<bs>
suffix:

Byte[offset]

Byte[]

B

PDU = (bs: Bit[])

where value = bs as T_at_offset <0, bs>

What is going on here? We start by decoding the PDU as a
sequence of bits. This decode will obviously be very quick as
we aren’t trying to impose any structure on the bit sequence.
It will essentially just skip over all the bits in the PDU in a
single leap without processing them in any way. However, it
also allows us to assign the name bs to the PDU bit sequence.
We then evaluate the expression bs as T_at_offset <0, bs>, which
will result in the decode of this bit sequence against the type
T_at_offset<0, bs> at some later point.

The type T_at offset is intended to capture the structure of
an instance of type T at some specified byte offset in the PDU.
It imposes the following structure on a bit sequence.

offset

B e EE—
.
prefix t suffix

If the offset is 0, as it is in our case, the prefix will be
empty, the type T will be matched against the start of the bit



sequence, and the suffix will soak up any bits that remain after
T has been decoded. The type T has the following structure:

length
payload
< .
2
o L]
- L]
left
right

The field left is of type Pointer. It matches against a byte,
interprets this as an unsigned integer, and also evaluates an
expression that will result in the decode of the original bit
sequence against the type T_at offset<ptr, bs>. In other words
we will decode another instance of T, but at a different offset
in the PDU to the original one. We could obviously decode a
different type at this offset as well with a small change to the
specification.

To summarize, the basic trick at the specification level is to
use the bs as T expression to repeatedly process a bit sequence
to “follow” the pointers and decode each individual block in
turn. At the level of the specification the solution is reasonably
concise. Ideally we would like to parameterize the types Pointer
and T_at offset on the type T so we can express this pattern
once, and then reuse it in similar situations elsewhere. At
present the APE compiler cannot cope with mutually-recursive
types that contain type parameters, and so we cannot do this.

Whilst, syntactically, we have a mechanism for describing
"non-linear" decoding problems, the challenge is to define
the execution semantics of bs as T in a way that provides a
satisfactory solution to the problem of building decoders from
such a specification. Imagine a decode engine as having a
queue of pending decode tasks, where a decode task consists
of a bit sequence to be decoded, and a packet type to decode
it against. We start by adding our PDU and root type as a new
task and start the decoder engine running. When we encounter
an expression such as bs as T we create a new task, add it
to the queue, and then continue our current decode. When the
current task is finished we pick the next task off the queue, if
there is one, decode it, and keep going until the queue is empty.
To avoid loops we record which tasks have been completed,
and skip a task if it is a duplicate of a previously queued
task. “Duplicate” in this context means the same bit sequence,
the same packet type, and identical arguments to this type.
Each new task would result in a new decode tree being added
to the browser at the top-level of the decode tree display, as
described in Section IV. The result, in our example, would be
a sequence of decodes of type T. The APE IDE uses properties
(Section V-C) to hide selected fields in a decode tree. Using
this ability we would hide the initial decode to clean up the
display, and also the prefix and suffix fields. But ideally we
want to do better than this. What value should be returned
from an expression such as bs as T? Suppose we introduce a
new opaque datatype that represents a decode task ID of some
form. When we add a new decode task to the queue, as a result
of the bs as T expression, we return the ID of this task as the

value of this expression. Such values in the decode tree view
could potentially be interpreted as hyperlinks, allowing you to
navigate around the structures that have been decoded.

There is one problem associated with this technique that we
don’t currently have a good answer for, namely how would we
construct encoders from such specifications? That challenge is
left for future work.

1. Type-checking

As mentioned previously, the APE type world is split into
packet types and abstract data types. APE expressions are
built from constants and packet type attributes. These attributes
have types, and these types are constrained to be abstract data
types. In other words the language does not allow an attribute
to have a value whose type is an instance of a packet type.
For those readers expecting the decode process to produce
some form of decode tree, with packet type fields having
as value the corresponding decode tree, this behavior might
be unexpected. However, to support action-directed decoding
(see Section V) such behavior is essential. The types of some
attributes are fixed. For example, the size, count and choice
attributes will always have values of type Int. But the value
attribute does not have such restrictions. By default the value
will be the bit sequence that was matched against this type
reference, and will have type Bits. But the user can override
this behavior by explicitly defining an expression for the value
in a constraint. The type of this attribute can therefore be
any datatype, either built-in or user-defined. The compiler uses
unification-based type inference[14] to deduce the appropriate
type for such attributes and the expressions that use them.
The compiler also uses typing information to allow some
expressions to be simplified. For example, an expression of
function type is assumed to be implicitly applied to this,
the field to which the constraint containing this expression is
attached. Similarly if an expression is deduced to have a packet
type, for example a field reference, then the compiler converts
this to a value attribute expression for this type. Such heuristics
were illustrated in Section III-C. The expression numBytes ==
header. totallength would be expanded by the compiler to numBytes
(this#value) == header. totallength #value for example. The compiler
could also use type inference to deduce the types of the
arguments to packet type declarations. However, at present
we do not do so, preferring the clarity of explicitly typed
parameters to the conciseness of implicitly typed ones.

Type-checking bit sequences presents a particular challenge.
The type Bits is used for bit sequences of arbitrary length.
However, in many cases we can deduce the length of a bit
sequence at compile time. Furthermore, during the decode
process the representation used to hold a bit sequence may
depend on the size of the bit sequence, and the alignment in the
PDU. For example, a field that is always sixteen bits in length,
and guaranteed to start on a byte boundary, can be simply
represented by a pointer to the data. In contrast, a field whose
length or alignment in the PDU is unknown at compile time
will require a more complex representation. To capture such
information the compiler introduces a family of specialized
bit sequence types of the form Bitsn. For example, the type



Bits5 is used for bit sequences whose length is guaranteed to
be always five bits long.

The user does not have to use the more refined bits types
in a specification. Instead the compiler adopts a two-pass
approach to type-checking bit sequences. In the first pass all
bit sequences are assigned the type Bits. Once the compiler
has propagated size information through-out the specification,
and has deduced the size constraints for each field, a second
type-checking pass is performed. This allows the compiler
to assign more specific fixed-length bit types to some ex-
pressions, together with the appropriate coercion functions
between expressions. A good example of the need for such
coercions is where the value of an alternation is required,
and the values of the branches of the alternation are all bit
sequences but of differing lengths. The refined bit sequence
typing information is then used by the various back-ends to
generate the appropriate representations for each bit sequence.

J. Alignment analysis

The compiler also performs an alignment analysis. By
default the language assumes that a type can be matched
against a bit sequence starting on an arbitrary bit alignment.
Whilst this allows very flexible decoders to be produced, they
will not be particularly efficient, and in many cases this is
overly general. For example, do we really want to decode
an IPv4 frame that starts three bits into a byte? The language
allows the user to specify alignment constraints on types, using
a similar notation to that adopted by Click[15]. Specifying
the starting alignment for every type would be very tedious.
Instead the user attaches alignment information to the "top-
level" types in a module, typically those that are exported,
and the compiler then propagates this information through-
out the specification. The refined bit sequence typing, when
used in conjunction with the alignment information, allows
each back-end to choose the most appropriate representation
of each bit sequence it manipulates.

IV. THE APE IDE

Gone are the days when a simple command-line compiler
interface was all that the average developer wanted. Integrated
development environments such as Visual Studio, Eclipse and
NetBeans provide a whole suite of tools to increase developer
productivity. Unfortunately protocol specification tools have
not kept pace. There is no fundamental justification for this,
other than it being a much smaller market. Almost all the
facilities that help you develop mainstream programming
language applications are also applicable to protocol specifica-
tion development. These include on-the-fly syntax-checking,
navigation tools, language-aware editors, integrated source-
level debuggers and so on.

One of the aims of the APE project was to explore ways of
increasing productivity. Companies spend a lot of money em-
ploying people to write and maintain protocol specifications.
Anything we can do to speed up this process has the potential
to save a lot of money. The APE language was designed to re-
duce a lot of the syntactic clutter and overspecification present
in many specification languages, pushing more of the work

onto the compiler. But there is a limit to how much speed-up
in development time you can get by changing the language
alone. Equally important, in our opinion, is the development
environment in which you create these specifications. It was
our intention to provide a modern development environment
for the APE, with facilities similar to those encountered in
conventional IDEs such as Visual Studio and NetBeans.

Writing an IDE from scratch is a large task. Indeed to
begin with we started down this path, intending to write a
small and simple environment to support APE development.
Unfortunately it quickly became apparent that users would
expect and demand far more features in the IDE than we had
the resources to provide. Many modern IDEs are extensible,
allowing support for new languages to be quickly added. But
this then raised the question of which IDE to support. Our
intention was to provide a number of different back-ends to
the compiler, targeting different languages. So there was no
single IDE we could assume all our users would be using.
Furthermore, we envisaged the decoders produced by the APE
as forming only part of a much bigger application. Switching
backwards and forwards between two full-blown IDEs could
quickly become irritating and confusing to users. Fortunately
there was a middle-ground option available. Some IDEs,
including NetBeans and Eclipse, are built on top of a platform,
a collection of modules providing the core functionality of the
IDE. Users are free to build their own applications on top of
this platform, allowing them to decide the mix of features they
require to support their application.

The APE IDE is built on top of the NetBeans Platform[16].
An example layout of the IDE is shown in Figure 1. The main
pane in this view shows an APE module describing an Ethernet
frame being edited. The pane is tabbed, allowing the user to
easily switch between modules. Furthermore, the pane can be
"undocked" from the main window into one or more auxiliary
windows, a useful feature when you wish to exploit multiple
displays. Indeed, thanks to the support provided by NetBeans
Platform, the arrangement of all the panes within the IDE can
be altered to support the user’s preferences.

The top-left pane show the list of opened projects, and
the modules within these projects. It also shows the currently
selected primary task and the back-end to use for generating
code, in this example the DecodeTree task and the APE
VM back-end. The pane on the bottom-left of the window
displays a navigator view of the currently selected module. It
displays the types and values defined in the module, groups
generic types and their specializations together, and highlights
those entries that are exported from the module. The toolbar
at the bottom of this pane allows the entries to be sorted
alphabetically or by source location, and can also hide private
declarations and actions.

As described in Section III-J, the compiler propagates
alignment information through-out the declarations. Alignment
errors, where the user expects a type to be decoded starting
on a particular boundary, but where the compiler fails to
deduce this fact, can be hard to spot. The decoder will function
correctly, albeit slower than expected. Types that are inferred
to start on arbitrary bit boundaries are highlighted in the
navigator view, allowing the user to quickly identify problems,
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Fig. 1. The APE IDE

and add additional alignment constraints when appropriate.
The entries for packet type declarations in the navigator view
can be expanded to navigate the internal structure, the fields
and subfields, of the type. Selecting an entry in the navigator
view displays the properties associated with the entry, see
Section V-C, in the properties inspector shown on the right-
hand side of the window.

In addition to providing the usual editing functions, includ-
ing seach/replace and control key short-cuts, the source editor
is aware of the APE syntax. The system performs on-the-fly
parsing of the APE code whenever the user pauses typing.
Syntax errors are displayed in the editor panel, allowing errors
to be quickly identified and fixed. Code folding and syntax
coloring are also supported. When generating code for the
APE virtual machine the generated code can be displayed in
the Target tab of the source view.

Developing a specification that compiles without errors is
only part of the challenge. We must also check that the
specification can decode our packets successfully, and imposes
the expected structure on these packets. This is another area
where the provision of a IDE can really help. The IDE contains
an integrated source-level debugger. The user can load a file
containing a sequence of packets, and then run the decoder
against each packet. Individual packets can be selected and the
execution of the decoder stepped through, both at the source
level and the virtual machine code level. The user can also set
breakpoints both in the source code and the VM code.

One of the intentions of the APE, which we expand on in the
next section, was to encourage greater sharing of specifications
between different groups. The IDE provides a subversion-
based interface to a specification repository[17], allowing the
user to browse the available specifications, and load them into
their projects.

V. ACTION-DIRECTED DECODING

The purpose of decoding within the APE system is to exe-
cute actions. These are fragments of application-specific code
that are interleaved with the fields defining a protocol specifi-
cation. Conventional parser generators, such as YACC[3] and
ANTLR[5], adopt a similar approach. They allow actions to
be embedded within a language grammar, and then arrange for
these actions to be executed as part of the parsing process. By
analogy, an APE decoder could construct a tree, representing
the hierarchical structure of the PDU, and execute the actions
as they were encountered during the decoding process. How-
ever, this is not the only possible execution strategy, or even
the most desirable one. To understand why we must examine
the differences between text-based parsing and the decoding
of “bit-level” communication protocols.

A parser must usually process all of the input text to
construct a parse tree. Even where only parts of this tree
may be required by an application, the nature of text-based
input can make it hard to skip over portions of the input
text that are of no relevance. In contrast, bit-level protocols



frequently employ fixed length fields, or type-length-value
(TLV) encodings for the fields. In such a setting it becomes
much easier to jump over subcomponents that are of no interest
to the application. Furthermore, applications that only require a
partial decode of packet data are surprisingly common. Packet
filtering, classification and indexing are typical examples of
such tasks.

If every decoder had to construct a complete decode tree,
simply executing actions as they were encountered during the
construction process, then this would impose an unacceptable
overhead on those applications that required access to only a
small subset of each PDU. For this reason the APE adopts
a rather unusual approach to protocol decoding. We take the
view that the only purpose of performing a decode is to execute
the actions embedded within a specification. If a part of the
PDU does not need to be decoded to support the current action
set then it should be skipped over. In the extreme case, where
the specification contains no embedded actions, the packet may
be skipped in it’s entirety. We use the term action-directed
decoding to describe this approach to protocol decoding.

The action-directed approach can yield very different de-
coders from the same specification depending on the actions
embedded within it. For example, our IPv4 example might
be augmented with a single action that uses the value of the
protocol field to gather statistics about the relative frequencies
of the different protocols carried by a link. An action-directed
decoder for such an example could skip the analysis of almost
all the fields within the IP packet. At the other extreme, a
PDU browser that displayed the detailed structure of a packet
would require a full decode of the PDU. Such behavior could
be driven by actions that accessed all the fields within the
PDU.

Although it might seem like action-directed decoding is
simply a different way of viewing the decoding process,
its influence permeates to the heart of the language design.
To allow the “thinest” of decodes, where we only perform
the minimum amount of work to support the actions, it is
important to avoid the construction of any form of decode
tree. This, in turn, requires careful definition of field visibility
within a specification to avoid creating a situation where part
of the decode has to create a partial decode tree just in case
another part of the specification contains an action that needs
to reference it later. If the language design is too liberal
then we may not be able to avoid creating such structures.
If the design is too restrictive then it may be hard, or even
impossible, to express the necessary constraints to define some
protocols of interest. The language design therefore requires a
delicate balancing act between these two extremes. One point
perhaps deserves further clarification. Whilst the decoder itself
is designed to avoid the construction of a decode tree, this does
not imply that an APE decoder cannot construct such a tree
for a PDU. It simply implies that such construction must be
performed by actions, perhaps mechanically generated, rather
than being an essential and implicit part of every decoder.

That different applications might require access to different
parts of a PDU seems quite natural. But if each applica-
tion had to take a copy of the protocol specification, and
then augment it with application-specific actions, we would

Task A
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action set

-

Specification

APE Compiler %t

Thin decode,
e.g.protocol pie chart

Fat decode,
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Fig. 2. Fat and thin decodes from the same specification.

quickly encounter problems. Our assumption is that a protocol
specification would be developed, and debugged, prior to the
insertion of application-specific actions. But bugs may be en-
countered later, and specifications naturally evolve over time.
Incorporating such changes in multiple application-specific
versions of the protocol source would be both tedious and
error-prone. Although we envisage actions to be relatively
small chunks of code, particularly when designed for real-
time execution, they can quickly obscure the structure of the
underlying protocol, further hindering the maintenance of the
protocol specification.

The APE addresses this problem by storing the actions and
the specification in separate files. The compiler is passed a
protocol specification and the application for which we require
a customized decoder. The compiler takes care of merging
the specification and the actions for the selected application
at compile time. The APE development environment (IDE)
allows the user to edit actions within the context of the merged
document. However, when such a hybrid document is saved the
actions are split and stored independently of the specification.
Furthermore, the editor can mark the specification portion of
the document as being read-only, avoiding accidental changes
to a shared specification during the application development
process. The merging process is illustrated in Figure 2, which
also emphasizes how the resulting decoder can vary in size
and speed depending on the selected action set. The view of
the merged document, as it appears within the APE IDE, can
be seen in Figure 3. The grey portions of text in this example
are read-only, showing that only the code for the actions is
editable.

A. Tasks

As noted previously, there are potentially many different
decoders that could be constructed from the same protocol
specification, each one differing in the amount of detail that
is extracted from the same PDU. We could take the view that
there is a set of actions associated with each application, but
this course-grained approach will prevent valuable opportu-
nities for sharing. For example, an application might require
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packets to be filtered before further processing. But a task
like filtering may be common amongst multiple applications.
We therefore associate actions with tasks, and an application
then uses one or more tasks to build a customized decoder.
Tasks may depend on other tasks, forming a directed acyclic
dependency structure. This allows us to construct tasks whose
purpose is simply to name, or group, another collection of
tasks. This grouping allows us, without loss of generality, to
specify a single task when building a decoder. We refer to the
task we use for this purpose as the primary task. We can view
the primary task as analogous to an application, but in practice
the decoder + actions is likely to form only a small part of
the application.

Clearly actions are expected to be executable fragments of
code. But what language should these fragments be written
in? To answer this question we must first understand how the
decoders themselves will be implemented. The APE develop-
ment system supports multiple back-ends. By this we mean
that we are able to generate decoders for a variety of different
languages. We might generate code for a low-level language
like C, or for an existing specification language. By default the
APE implementation generates code for an abstract machine,
the APE VM. This is similar in spirit to the Java Virtual
Machine[18], but specialized for the task of protocol decoding.
The APE debugger uses this virtual machine to build a source-
level debugger, a crucial component when developing a new
specification. Whilst a software implementation of this VM is
naturally slow, at least when compared to a decoder written
in C, we have also developed an implementation in firmware.
The current APE implementation can also generate decoders
written in C++.

Just as there are multiple different back-ends for the APE,
the intention is that there will also be multiple languages the
actions can be written in. For example, when using a C back-
end it may be natural to embed actions written in C within the

specification. These actions would then be interleaved with the
code generated for the decoder. If the decoder takes the form
of code for the APE VM then we could also write actions in
C. In this case, in a software implementation of the APE VM,
we might use something akin to Java’s JNI interface[19] to
call the actions. In the case of an FPGA implementation of
the VM, for example in a Xilinx Virtex 6, we might implement
the actions on the embedded PowerPC.

For small actions, and in most cases we expect the actions
to be small particularly when decoding at high speed, the
overhead of calling between the APE VM processor and an
auxiliary general-purpose CPU may be unacceptably high. In
such cases we might be better off writing the actions as VM
code sequences. This situation is analogous to embedding
C actions in a C back-end, except in this case we are
embedding VM code sequences representing actions into a
VM code sequence performing the decoding. Of course it
would be unrealistic to expect the user to write such sequences
directly, just as users rarely write in assembler any more.
However, we can imagine defining a variety of simple domain-
specific languages, along with translaters into APE VM code.
Typical examples might be languages for packet filtering,
populating flow-specific data structures, and adding indexes
to a database. Taken to extremes, it might even be useful to
define actions that perform further decoding. For example,
it might be possible to define a translator from an existing
protocol decoding language to APE VM instructions. Given
such a translator it would be possible to embed such code,
as actions, to perform decoding of fields that were treated as
opaque bit sequences by the APE. Why might this be useful?
Well, it would allow existing decoding languages to exploit
high-performance implementations of the APE VM. It might
also allow the APE to support a wider range of protocols.

For an action to perform a useful task it must be able to
access the current decoding context and retrieve the attributes
of fields decoded within the scope of the action. Given the
wide range of action languages we would like to support it
seems unreasonable to expect the APE compiler to understand
the detailed structure of each of them. Our approach is to
embed simple metavariable expressions, such as $protocol and
$payload#size, within the action text. Each occurrence represents
a reference to part of the decoder state, for example the value
of a decoded field. The compiler searches for metavariable
occurrences and replaces each one by an expression that
accesses these field attributes at runtime. The exact form of the
replacement expression will depend on the action language and
the currently selected back-end. Clearly not all combinations
of back-end and action languages will be supported, partly
because of time constraints, and also because some combina-
tions are of little practical use. One of the properties of a task
is the language in which the actions associated with the task
will be written in, and the compiler ensures that the selected
tasks are compatible with the chosen compiler back-end.

When prototyping applications using the VM back-end it
would be tedious to have to keep writing domain-specific
languages for all the different tasks we might wish to perform.
And writing actions in a language like C would create its own
problems in a prototyping environment due to the requirement
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to write a separate file with the C actions, load a C compiler
to convert them to a DLL, and then load the DLL into
the VM environment. An alternative approach is to use a
scripting language, such as BeanShell[20], to write our actions.
Whilst clearly not practical for high-speed real-time action-
directed decoding, it can be useful for offline analysis of packet
data. Using BeanShell actions we can write a simple “Hello
Protocol” example, shown in Figure 4, that illustrates the use
of actions and metavariables.

B. Thin and Fat Decodes

The “Hello Protocol” application was an example of a thin
decode. In theory we just needed to access a single field, at
a fixed offset, to be able to execute the action. In practice we
may need to do a bit more work. For example, the IPv4 PDU
would typically be carried in the payload of an Ethernet packet,
and so we would have to decode part of the Ethernet frame to
determine the type of the payload, and to decode the IPv4 type
if the Ethernet type field had the value 0x0800. Furthermore,
without further hints, the compiler cannot guarantee there
won’t be any further actions embedded within the IP payload
field. So the decoder may need to perform additional steps to
explore this possibility. The exact behavior of the decoder is
therefore not quite as simple as we might at first think. But
we can safely assume that many of the fields within the IPv4
header would be skipped over by such a decoder. Another
rather more plausible example of a thin decode is a packet
filter where we examine one or more fields within the PDU
and reject the packet if certain criteria are not met.

In a fat decode all, or most, of the fields need to be
decoded. An example might be conformance testing where
we wish to check that all of the packet fields are well-
formed. A Wireshark-style packet browser also requires a full-
decode of a packet, although in this case it can be done
lazily. Some applications may require multiple decoders to
be constructed. For example, we might use a packet filter to
reduce the incoming packet rate to an acceptable level, and
then couple this to an offline decoder that performs a more
detailed inspection of the remaining packet data. Our case
study in Section VI is an example of such an approach.

As mentioned earlier, the APE IDE encourages the clean
separation of specification development from application-
specific task development. The initial “Core” task does not

allow actions to be inserted. When this task is selected as
the primary task the user is allowed to edit all parts of
the specification. The intention is that the user will start
in this mode, developing the specification and checking it’s
correctness using the APE browser and debugger. Once the
user is confident the specification is correct the user can then
start developing application-specific tasks. The tasks editor is
shown in Figure 5. When the user selects a new task as their
primary task then the editor switches to a mode where the
specification part of the document becomes read-only; only the
text of the actions can be edited. The intention is to allow the
same specification to be shared between multiple application
task developers without any danger of the shared specification
being inadvertently altered.

C. Properties

Actions drive the decoding process. However, this does not
mean that these actions must be written explicitly by the
user. Indeed in many cases writing actions is a tedious task
that could better be performed automatically. For example,
imagine annotating a specification with actions to construct
decode trees. The structure of these decode trees is based
on the structure of the specifications themselves. A compiler
can therefore generate suitable class definitions to represent
such trees, and then automatically insert actions to generate
instances of these classes. In practice, however, the result is
unlikely to be very satisfactory. A user may wish to suppress
some fields from the decode tree as they contain no semantic
value; their presence in the PDU is simply to help drive the
decoding process. Length and choice determinants are good
examples of such fields. A user may also wish to change the
class names of the generated classes.

Fortunately the APE provides a simple but powerful mech-
anism to support such requirements and many others. A set of
properties can be associated with each task. For predefined
tasks these properties are also predefined. For user-defined
tasks the user is able to define custom property sets. A property
consists of

e a name,
a type,
a description,
a scope,
and a default value

The name, description and default value should be self-
explanatory. The property type can be a primitive type such
as String, Integer or Boolean. The type can also be defined
as a simple enumeration. The property editor uses the type
information to select the appropriate property value editor. For
example, a property of Boolean type will display a check box
that can be used to alter the value. An enumeration will use
a Combo Box editor to allow the user to select the required
value from amongst the permitted values.

Some properties only make sense when attached to an
individual field. Other properties are designed to be attached to
types, whilst others are intended to be attached to each module.
The scope of a property indicates which contexts, module,
declaration, or field, a property value can be attached to.
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Figure 5 shows some properties being defined for the Example
task. When an element such as a module, declaration or field
is selected in the navigator view, the corresponding properties
are displayed in the property view, grouped by task. Tasks may
depend on other tasks, and every task will (implicitly) depend
on the Core task, so in general there may be multiple groups
of properties displayed in the property panel.

Some properties are predefined, namely those associated
with predefined tasks. For example, the Core task has an
alignment property defined on types that allows the user
to specify the desired starting alignment for the type (see
Section III-J). There is also a uri property to allow the user to
provide a link to some external documentation relevant to the
module, type or field. This will typically be a link to a section
in the formal specification of the protocol being defined. A
menu attached to the navigator panel allows the user to display
such documentation if the URI is defined.

Some properties are automatically defined. For example, the
APE supports “JavaDoc” style comments of the form /xx

x»/ and /// .... These comment strings are extracted
from the source and made available as description properties
associated with the Documentation task. This task also defines
a format property, allowing the user fine-grained control of the
display of each field. The intention is for property values to
be available to actions, although this is not implemented in
the current prototype.

VI. AN EXAMPLE

By this stage the reader should have developed some famil-
iarity with the APE language, the IDE that supports it, and
the concepts of task and action-directed decoding. However,
what might be less clear is how it all fits together; the “bigger
picture”. This section describes a small example that will
hopefully help to remedy this situation.

A. Preprocessing

The first phase of our example takes a stream of packets,
and discards those that are of no interest to us. The remaining
packets are written to an HDF5 packet table[21], [22]. To allow
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these packets to be efficiently queried at a later time we also
write some details of each packet to an object database. We
will generate a thin decode for the component that performs
the filtering and indexing, illustrated in Figure 6. Having
archived the packet data we can use the database to query
for packets of interest and perform more in-depth analysis of
them. In our example the “in-depth” analysis simply consists
of viewing them in a packet browser. This process is illustrated
in Figure 7. Note that the example illustrates the use of both
thin and fat decodes.

We assume we already have specifications for Ethernet and
IPv4; our two decoders will be driven from these specification,
but use different tasks. We start our example with the design
of the thin decoder. We split the problem into a primary task,
and three dependent tasks. Whilst unnecessarily complex for a
simple example like this, it provides an opportunity to illustrate
how larger tasks might be segmented into separate shareable
subtasks.

The Preprocessor task depends on the Filter, Archive, and
Index tasks. Invoking the APE compiler with Preprocessor
specified as the primary task will merge in all the actions
from these subtasks. In this example we will not associate
any actions with the Preprocessor task itself. Its role is simply
to group the other tasks. Although in our example we expect
the archiving actions to be invoked after the filtering has
taken place we choose to not create a dependency between
these tasks. After all, in another application we may wish to
archive an unfiltered packet stream. In this example we use
the APE VM as our build target with the actions written using



BeanShell. A similar example could be constructed using the
C++ back-end, with actions written in C++.

B. Filtering

To keep the example simple we use a trivial filtering
criterion. We only want UDP packets; anything else should
be rejected. The APE BeanShell environment contains a reject
method that can be used to halt decoding of the current packet.
Using this method our filter can be written as

protocol:
« Filter:
if ($protocol != $IP_Protocol.udp)
reject(); »

C. Archiving

The next step in our processing is to write any packets
that pass the filter to an HDF5 packet store. In this example
we assume the environment that initiated the decoder has
already established a suitable database connection, and created
a packet table. Our action simply has to add a selected portion
of the decoded packet to the table. The following action
achieves this task.

payload:
« Archive:
idx = writeToHDF5( $header .. payload ); »

The compiler will replace the metavariable $header .. payload by
an expression that, at runtime, will represent the bit sequence
from the start of the header field to the end of the payload field.

D. Indexing

A filtered stream of packets can now be written to a packet
store, but how do we get them back again? In some cases we
may just want to access them sequentially. Examining them
using a WireShark-style offline browser would be an example
of this style of retrieval. In more interesting applications we
may need to search for packets that meet certain criteria. To
address this need we augment our application with a task that
writes a précis of each packet to an Object Database, in this
example db4o[23]. The exact form of the précis is unimpor-
tant. In practice it would depend on the nature of the queries
we intended to perform. For example, we might include a
reference to the previous précis in a flow in applications that
required efficient traversal of packet flows. In our example
we simply write the source and destination addresses, and the
value of the protocol field, to the database. For such records
to be useful we must also record a link to the corresponding
entry in the HDF5 packet table containing the packet from
which this précis was constructed. The Archive task stores a
packet ID as part of the HDF5 packet insertion action. The
Index task can add this value to the précis. However, for this
to be well-defined it is important that the packet is inserted
into the packet table prior to writing the précis to the database.
If the two actions are attached to different fields then the field

ordering can be used to ensure the actions are executed in the
correct order. However, if we wish to attach the actions to the
same field then we must record the fact that the Index task
depends on the Archive task in the definition of this task. The
compiler will then ensure the actions associated with these
tasks are executed in an order that respects the dependency
constraints. The task dependencies can be set in the Tasks
Editor.

payload:
« Index: setIndex ($header.protocol,
$header.src, $header.dest, idx); »

To complete the first part of the example we construct
a primary task, Preprocess, that depends on the three tasks
we have just defined. Running the compiler with Preprocess
selected as the primary task will result in the construction of
a decoder that filters, archives and indexes a packet stream.
The resulting decoder is optimized for the actions it has to
support. The actions have no interest in the details of the
payload, the IP options, or most of the other fields within
the IPv4 header. The decoder will therefore skip over these
fields without attempting to interpret them. At present it can
be hard to visualize what must be decoded, and what can be
skipped, without examining the assembly code generated by
the compiler, a task not to be recommended for the feint-
hearted! Eventually we plan to add support for color-coding a
view of the original specification so we can quickly see what
fields are directly used within the actions, what fields must
be decoded to determine the sizes and offsets of those fields,
and the decoding of these may lead to further dependencies
and so on. It would also be useful to color-code the decoded
PDUs in a similar fashion. In complex cases referring to
a single field within an action may cause an avalanche of
dependencies that result in the complete PDU having to be
decoded. In practice such extreme behavior is unlikely to
occur, but providing feedback on the relationship between
actions and the resulting decoding optimizations should help
avoid unexpected performance issues.

E. Analysis

We now consider the second part of our example. The APE
development environment provides a browser for displaying
the structure of packets, as determined by an APE decoder. The
browser is similar in nature to a WireShark-style browser, but
it can also handle partial decodes produced by thin decoders.
In practice this just means the browser must be able to cope
with bit sequences representing sequences of fields that have
not been decoded. If we attached the browser to the decoder
produced by the Preprocessor task we would find that many of
the fields, for example the payload and options fields, would
not have a value in the displayed decode tree. Contrast this
behavior to a WireShark display, where every field that was
present in the packet would be visible in the display.

What if we want to see all the fields within the PDU?
The IDE contains a predefined task, FullDecode, whose sole
purpose is to touch every field within the PDU. In other words



it creates synthetic actions that access every attribute of every
field within the PDU, which has the side-effect of forcing all
the fields to be decoded. We can build a decoder using this
task, and then use the browser on this decoder to see a full
decode of each packet. This decoder is an example of a fat
decoder, in contrast to the thin decoder we generated for our
preprocessor.

The browser can examine packets from a variety of sources.
In addition to being able to examine conventional packet dump
files it can also retrieve packets from an HDF5 packet table.
We can therefore use the browser, coupled with our fat de-
coder, to examine the packets written to the packet table by our
preprocessor. However, there may be millions of such packets,
although this is unlikely given the interpretive nature of our
current VM implementation. Trying to find packets of interest
within such a table by sequential scanning is not very practical.
Fortunately the IDE includes a BeanShell console window
that can be used to write and execute BeanShell expressions.
Furthermore, the browser is scriptable, and so we can write
a script to retrieve the packet indices of all packets that meet
a selected criterion from our db4o database. These indices
can then be used to retrieve the raw packets from the HDF5
packet file for further decoding and analysis. In our example
the subsequent process simply consists of performing a full
decode and viewing the results in the browser. But it should be
easy to see how we might extrapolate the same ideas to more
realistic applications, and more efficient implementations of
these ideas.

Our example, whilst simple, illustrates many of the key
ideas of the action-directed approach to decoding. BeanShell
actions show great promise for offline exploratory browsing
and packet processing. However, support for other action
languages is also important as BeanShell is not a practical
solution in a real-time or firmware setting. The C++ back-end
supports actions written in C++. It would also make sense
to define a few small domain-specific action languages for
common tasks such as filtering. This would allows the actions
to be embedded directly within the decoding code rather than
having to be called from it. In addition, the use of such
languages allows actions using them to be easily retargeted at
different back-ends. In some cases it may be more appropriate
for a task to specify task-specific properties and then let the
compiler convert these settings into actions. A good example
is the accumulation of field information within some form of
“breakout” structure. Different tasks may wish to collect the
values of different fields, and some tasks may require access
to the same fields. Using properties to generate the actions
indirectly allows the requirements of all the tasks to be merged
without the individual tasks having to collaborate, or even be
aware of each other.

Although not obvious from our example, the decoder
produced for the Preprocessor task performs slightly more
decoding than might be expected. The cause of this additional
work is the generic type defining the IP packet’s payload.
Modules such as TCP and UDP add their own specializations
to this type, enabling the decoding of the payload to vary
depending on the value of the protocol field. To enable a
scalable solution modules must be compiled without knowing

all the potential specializations of generic types that might
be added. So when compiling the IPv4 type we cannot simply
assume that we can skip decoding the payload. Other modules
may define some additional specializations of the IP_Payload
type that have embedded actions for our Preprocessor task,
or one of its subtasks. To ensure we don’t accidentally skip
executing such actions we must perform the generic dispatch
on the payload type. Of course if no other modules are loaded
then the payload will be decoded as an uninterpreted sequence
of bytes. And if other modules do add specializations but
contain no embedded actions for these tasks then they will
also treat the payload as an uninterpreted sequence. So the
overhead is small compared to performing a full decode,
but still larger than we might have expected. To avoid this
additional overhead the compiler needs more information. We
could perform a “full-program” analysis of all the specification
modules making up an application, allowing the compiler to
deduce all the static specializations of each generic type. Even
this approach is not guaranteed to be safe when modules can
be loaded dynamically. Other approaches are also possible. For
example, in the current implementation we can add additional
constraints to a task, using the Tasks Editor, to limit the mod-
ules the task can add actions to. In our example if the compiler
could deduce that the Filter/Archive/Index/Preprocess tasks
could only be added to the IPv4 module then it could safely
assume the generic dispatch could be optimized away.

VII. FUTURE WORK

Whilst the APE project has covered a lot of ground there are
still many areas requiring further exploration. In this section
we briefly describe some of them.

A. Other build products

The APE could potentially produce a large number of
different build products. These products fall into two main
categories, dynamic and static. By dynamic we mean build
products that are driven by the decoders generated by the
APE. The simplest dynamic build products are probably filters.
For example, we can simply insert actions at various points
in a specification that check predicates on one or more
decoded fields and then either reject or accept the packet. Our
HDF5 example illustrated this process. Clearly if an existing
application used a two stage approach of online filtering
followed by offline analysis of the filtered stream then it
would be reasonably easy to integrate the APE into such an
application. Dynamic build products use actions to interact
with the decoder. But these actions do not have to be written
explicitly. For example, the APE supports task-specific prop-
erties as well as actions. We could therefore imagine attaching
properties to selected fields indicating that we want to filter
on them. The compiler could then automatically generate the
appropriate actions along with a “driving” application that
allowed patterns of acceptable field values to be specified
for example. This choice between explicitly specified actions
vs. implicitly generated ones will probably turn out to be a
common theme. Initially, for a new type of build product,
we would write explicit actions to prototype the application.



If the build product is likely to be used repeatedly, on lots
of different protocols, then it will probably make sense, at
some later point, to automate the generation of these actions,
where this generation may be driven simply by the task itself
or by task-specific properties. Given we have BeanShell, a
Java scripting language, embedded in the APE we could even
imagine allowing the users themselves to write scripts that
generate actions.

Another common style of application is likely to be one
where a decode tree is constructed for a PDU, and then
application-specific methods are used to traverse this decode
tree. The simplest form of such an application is probably a
PDU browser, such as Wireshark[7]. This application uses a
plug-in architecture for adding new protocols, and an APE
backend could potentially generate code for such plugins.

Some applications require a decoder to produce a summary
of fields of interest in some form of structure. In many cases
it should be feasible to generate simple actions to populate
elements of such structures. Indeed one might go one step
further. You could imagine tagging various fields of interest,
using properties, and the compiler could then potentially
determine the best structures to hold the values of all these
fields, together with the actions to populate these structures.
Once again the best migration strategy seems to be to write
actions explicitly initially, and to then automate the process
once the pattern becomes clear.

B. Encoding

In the case of decoding we start with a bit sequence and
create a hierarchical structure that matches this sequence. Of
course, in the case of the APE we avoid building this structure
explicitly, unless we write actions to do this, instead traversing
the types in a hierarchical fashion. Or, looking at it another
way, the call graph will end up mirroring the structure of the
associated implicit decode tree. Given that encoding is the
inverse of decoding, our starting point for an encode is to
construct a hierarchical representation of the desired semantic
content of the packet. Now whether we actually build an
explicit tree, or simply execute a call graph that mimics this
structure, is just one of our choices. For some protocols it is
possible for the calls to directly populate the bits in the PDU,
avoiding the need to build an explicit hierarchical structure
prior to encoding. But in the general case it is difficult to do
this, and we will need to build a tree and then traverse it to
construct the PDU. The APE can already generate classes to
represent decode trees, and these could be extended to support
the encoding task. This sounds deceptively simple, but there
are a number of issues which complicate this process.

The first question is which fields in a type should be
represented as children in such an explicit decode tree. For
example, consider something really simple such as an IPv4
header. We could demand the user builds a node for each field
within this header. But there seems little point in constructing
a node representing the version field, and then checking it has
the correct value. Instead the system could simply synthesize
such a node. The header length field is another good example.
Requiring the user to provide an explicit length would be both

unnecessary and error-prone. The run-time should be able to
synthesize the appropriate field value at the point where the
tree is encoded. Another good example is where a field is
optional, and another bit field records whether the optional
field is present or not. In that case we might simply use a
null value, in the case of C++, to indicate an absent field.
The encoder should then use this value to set the bit field
appropriately. A CRC field can also be synthesized. These are
all examples of a general process. Given a “full” decode tree
we should be able to analyze the constraints, and structure of
the types, to determine which fields can be derived from the
structure, or values, of other fields. We can imagine pruning
such elements from the decode tree, and it is the resulting
tree that we want the user to build. As with many APE-
related things, the analysis required to determine whether a
field is derivable can be very simple in some cases, but almost
intractable in others. However, such analysis is essential if we
want to provide a natural interface to building PDUs.

So far we have been considering things that make the system
easier to use. But is there anything akin to action-directed
decoding that can be applied in such a setting? Suppose we
wanted to generate a lot of test packets, at high speed, where
each one had a lot in common with the rest, but where
a few fields changed between each packet. This might be
something as simple as a sequence number, or perhaps as
complicated as the payload. In such cases we can imagine
the tree representation of a PDU as having two kinds of
nodes. The majority of them will be treated as before, but
a few, the transient ones for want of a better term, will be
modifiable. So we can imagine building a partial tree, with
holes where the transient nodes will be. We can then use this as
a template. We fill in the holes and encode the packet. We then
fill in the holes with different values and encode the packet
again. And we keep doing this until we get bored, or want
to build a slightly different template. Now, of course, there
is a simple way of doing this. We could wait until the holes
have been filled in, and then just perform a normal encoding
step on the complete tree. But this would obviously be very
wasteful of resources, as in some cases almost all the PDU
will remain unchanged. If a hole represents a field that will
always be filled in using the same representation, with the
same size, then we could simply build a PDU with gaps, and
then when a hole gets filled we would simply fill the gap.
The cost of instantiating the template each time would then be
greatly reduced. Of course the situation might not be as simple
as that. For example, the hole might represent an optional
field. Assigning a non-null field to this hole might require
setting a bit elsewhere in the PDU to record the presence
of the field. So, in general, instantiating the template may
require concatenating bit sequences that were computed at
template creation time, shifting them, and so on. The challenge
would be to analyze which fields were transient ones, and then
maximizing the work that gets done prior to hole instantiation
to minimize the cost of specializing the template each time.
There is plenty of scope for heuristics and other optimizations
in this area.

The APE IDE allows the user to attach task-specific prop-
erties to fields (and types and modules). We could imagine



attaching a new property to fields to tag the ‘transient” ones,
and then use this information to guide the construction of the
encoders. Implementing such a partial encoding scheme would
provide a nice complement to the action-directed approach to
decoding, and would fulfill one of the original aims of the
project, namely to generate encoders and decoders from the
same specification.

C. Flows

The APE has largely focused on the syntactic aspects of
protocol decoding. However, in reality most packets cannot
be analyzed in isolation. Sequences of packets form flows,
and state machines at each end of the communication pipeline
control which packets are sent and resent. To fully analyze a
packet sequence an application frequently has to be aware of
such flows and state machines. This raises the question of what
support, if any, the APE should provide in this area. We could
take the view that the work of the APE stops after syntactically
decoding a packet. At the other extreme we could extend the
APE to allow the state machines to be defined, and the results
incorporated into the generated decoders. Unfortunately the
presence of timeouts in such state machines, and the fact that
we may have to start monitoring a link part-way through a
session, makes this task rather challenging to support in an
automated fashion. There is, however, an intermediate stage
that may be worth implementing in the APE. We could extend
the constraint language to indicate which fields in a protocol
should be used to represent a “flow”. In some cases the order
of the fields is significant, and in other cases it is not, and
so we would need functions to capture both behaviors. To
identify flows that span protocol layers we would introduce
a notion of flow nesting. For example, at the IPv4 layer we
would define flows using the source and destination addresses.
In the TCP layer we would then derive a subflow based on the
current IPv4 flow augmented with the source and destination
ports. The intention would be to map flows to flow IDs, and
then to allocate flow-specific areas of memory for use by the
application code. Whilst the application would still have to
manually perform such tasks as state tracking, at least some
of the memory management chores could be offloaded to the
APE.

VIII. CONCLUSIONS

In this report we have described many of the accomplish-
ments of the APE project. The resulting system can be used
to support a variety of decoding tasks. The next step is to
gain experience of applying these tools to some real examples,
enabling us to evaluate their utility in practice. Furthermore,
as described in Section VII, there is still plenty of scope for
developing the language and tool chain further. We leave those
tasks as an exercise for the reader.
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